Only in the southern part of the Iberian Peninsula the large white butterfly Pieris brassicae was recorded to pass the summer in pupal aestivation, induced by long-day photoperiods. It is not clear why this photoperiodic response is regionally restricted. We investigated whether the change of life history in P. brassicae may affect the infestation by parasites. This was done by testing the coincidence of photoperiodic responses in both the host P. brassicae and in its main parasitoid Cotesia glomerata. While the response under short-day conditions was very similar in both species, no summer dormancy of any type was found in the parasitoid at photophases >= 15h and temperatures of 15°-25°C in contrast to 100% aestivation in the host. We suggest that aestivation is a response which allows the host to desynchronise its life cycle from that of its parasitoid. This is effective because parasitoid wasps cannot pass the temporary absence of suitable host stages by a similar developmental rest. C. glomerata is then forced to switch to less adequate host species which diminishes its reproductive success.
At the south western border of its extensive distribution, the multivoltine large white butterfly, Pieris brassicae L., is exceptional in undergoing summer diapause or aestivation. In all other regions investigated, P. brassicae pupae only hibernate. The transitional zone from non-aestivating to aestivating populations is a geographically stable region south of the Pyrenees. The restriction of this response to this region cannot be accounted for in terms of genetics as aestivation is intermediately inherited, with the heritability (h2) of aestivation in inbreeding lines between 0.35 and 0.77. Two hypotheses are presented to explain why this species does not aestivate in more northern regions. First, aestivation is a behaviour that serves to synchronize generations in areas where this species produces a high number of generations per year. Second, aestivation reduces the incidence of parasitism suffered by the butterfly by desynchronizing its life cycle from that of its main parasitoid, Cotesia glomerata. The two hypotheses are not mutually exclusive and both seem to be adaptive where the species is multivoltine. and Hubert R. Spieth, Ulrich Pörschmann, Carola Teiwes.
The relations between the patterns of discontinuous gas exchange cycles (DGCs) and water loss were investigated in non-chilled diapausing pupae of the white cabbage butterfly Pieris brassicae kept at room temperature (22-24°C) in Petri dishes. An electrolytic respirometer, combined with an infrared (IR) actographic device was used for the simultaneous recordings of metabolic rate, cyclic release of carbon dioxide (bursts), passive suction inspirations (PSIs) and body movements. The patterns of cyclic gas exchange in four- and five-month-old non-chilled diapausing pupae varied individually to a considerable extent. About 40% of the pupae displayed long DGCs lasting 1-3 h, while the interburst periods were characterised by rare and almost regular large PSIs succeeding at intervals of 1-4 min. Nearly 30% of the pupae exhibited short DGCs lasting 3-5 min, while between the bursts there occurred unclear frequent gas exchange microcycles. Standard metabolic rate (SMR) did not reveal significant differences between long DGCs and short DGCs ranging from 32-56 (mean 47.6 ± 4.6) ml O2 g-1 h-1, and 28-61 (mean 44.95 ± 5.3) ml O2 g-1 h-1, respectively. The mentioned levels of SMR were characteristic of diapausing pupae.
Water loss in pupae with long DGCs was determined gravimetrically to be 0.29 ± 0.1 mg g-1 day1. At the same time, water loss in pupae that showed only short DGCs and irregular microcycles was 1.73 ± 0.31 mg g-1 day-1, which was significantly higher than in individuals characterised by long DGCs. We suggest that water loss in the non-chilled diapausing pupae may depend significantly on the patterns of cyclic gas exchange: long cycles and rare but deep PSIs exerted a marked water conserving effect.