A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness. and J. Liu ... [et al.].
The Old World ladybird Coccinella septempunctata has rapidly established itself as an abundant, widespread species throughout North America. Overwintering individuals of this species, and of native ladybirds, were collected from early season alfalfa in northern Utah during the period of initial establishment of the invader (1989 to 1999), and were measured for body size. Adult body size can vary widely within insect species, often reflecting differential success of individuals as immatures in obtaining food. Here I examine patterns of ladybird body size to address two questions associated with the establishment of C. septempunctata: (1) is there evidence for adverse impact on native species?, and (2) why has the invader has been so successful in establishment? As an indirect test of adverse competitive effect of the invader on native species, I determined whether mean body size of adults of the five most common native species (Coccinella tranversoguttata, Hippodamia convergens, H. quinquesignata, H. sinuata, and H. tredecimpunctata) declined over the period 1991-1997 as the invader increased rapidly in abundance. No such decline was observed for any of these species, thus providing no evidence that the invader's establishment has significantly increased scramble competition for food among immature ladybirds. I also compared body size distribution of the invading species with that of native species. The invader was distinctive in having particularly large variation in body size among individuals (i.e., in having relatively high proportions of both unusually large and small individuals). Such results are consistent with the hypothesis that the invader's success derives from being a generalist with much "ecological flexibility" in regard to the conditions under which it engages and succeeds in reproduction.
The global-scale natural experiment created by the widespread dissemination of most of the 111 species of pines (genus Pinus, family Pinaceae) has shed light on many aspects of plant invasion ecology. Introductions and the fate of alien pines have been well documented worldwide, facilitating the accurate labelling of species as “naturalized”, “invasive”, or “non-invasive” using objective criteria. Thirty species are naturalized and 21 are invasive. Three life-history traits that clearly separate invasive from non-invasive taxa define the inherent ability of species to disperse over long distances, win in competition against other plants, and to survive or proliferate under a range of disturbance regimes. The realization of colonization opportunities for potentially invasive pines is determined by extrinsic factors, especially those that mediate seedling establishment. Meta-analysis of many introduction/invasion events revealed the interplay of factors. Detailed studies of pine invasions have elucidated the roles of long-distance seed dispersal and propagule pressure in driving invasions. Enhanced understanding of the ecology of pine invasions has improved our ability to manage these invasions. No other speciose genus of plants has yielded important insights on so many facets of invasion ecology.
We investigated the effects of different temperature regimes and dry storage on germination of H. mantegazzianum (Apiaceae, native to Caucasus) seeds in the laboratory and linked the results with studies of seasonal seed bank depletion in a common garden experiment and under field conditions. Seeds were collected at seven sites in the Slavkovský les region, Czech Republic, cold-stratified for 2 months and germinated at seven temperature regimes. Under all temperature regimes, fresh seeds germinated to significantly higher percentages than older (1, 2, 3 years) seeds. For all storage lengths, seeds germinated best at alternating day/night temperatures of 20/5 °C. The length of the germination period had a significant effect only at low constant temperatures of 2 and 6 °C, where germination percentage increased between 2 and 6 months. Seasonal germination exhibited a distinct pattern, with rapid depletion of seed bank by the first spring after seed burial. Non-dormant seeds were present in the soil early in spring and late in autumn. The higher summer temperatures prevented dormancy breaking and another cold period of at least two months below 10 °C was needed to bring non-germinated seeds out of dormancy. The results suggest that (1) seed dormancy of H. mantegazzianum was not completely broken until the first spring, but that some seeds re-enter or retain dormancy during high summer temperatures and that (2) the threshold needed for breaking the dormancy was achieved gradually during the cold autumn and winter months. However, in a small fraction of seeds the dormancy breaking process took several years. Of seeds buried in 10 different regions of the Czech Republic, on average 8.8% survived 1 year, 2.7% 2 years and 1.2% remained viable and dormant after 3 years of burial. The ability of even small fraction of H. mantegazzianum seeds to survive for at least 3 years can result in re-invasion of this species into controlled sites.
The citation frequency of papers on invasion ecology published between 1981 and 2003 and that had accumulated at least 30 citations on the Web of Science on 9 August 2006 was analysed. The dataset comprised 329 papers and 27,240 citations. For each paper, the total number of citations was recorded and the annual citation rate (number of citations per year) was calculated. Papers were classified into broad research fields: plant invasions, animal invasions, biological control, and general papers (reviews and syntheses). Eight papers were cited more than 300 times, five of them dealt with general topics, and the mean value of the total number of citations across the whole data set is 82.8±73.1. The mean annual citation rate is 11.5±11.3 citations per year; six studies received on average at least 50 citations each year. About a half (50.8%) of papers in the data set deal with plant invasions. General papers are significantly more cited than papers from the other categories. The annual citation rate increased with time over the analysed period (1981–2003), by 1.0 citations per year. To compare the trends in invasion ecology with those in other fields of ecology, comparable data were compiled for population ecology and dynamics, and global change. The annual citation rate for invasion ecology as a whole increased faster than that for population ecology and dynamics, but not exponentially as is the case with studies on global change. The best-cited papers on invasion ecology were distributed among most of the top ecology journals. Those published in Oikos, Journal of Ecology, Ecological Applications and BioScience are cited 3.8–5.8 times more than the average for these journals (based on the impact factor). Papers on biodiversity, community ecology, impact, invasibility, dispersal, population ecology, competition, resources, genetical issues, biological control and species invasiveness received the highest total number of citations. However, measured by the annual citation rate, the hottest current topics in invasion ecology are the effect of global change on invasions, the role of natural enemies, character of the invasion process, evolutionary aspects, invasibility of communities and ecosystem processes. Some topics are disproportionally more cited than studied and vice versa. Studies on plant and animal invasions differ in focus: the topics of invasibility, biodiversity, resources, species invasiveness and population genetics are more emphasized in botanical studies, dispersal, competition, impact and pathways in papers dealing with animal invasions. Studies of grasslands and marine environment are most frequently cited in botanical and zoological studies, respectively. Most of the highly cited papers deal with multiple species; only 14 plant species and four animal species are the primary focus of one or more of the highly-cited papers. Twenty-two authors (4.5% of the total involved in the papers analysed), each with seven or more contributions cited at least 30 times, together contributed 49.4% of the most-cited papers, and attracted 55.6% of the total number of citations.