Comparative studies of closely related species may provide useful insights into the effect of species traits on invasion success since some of the biases associated with multispecies studies, such as phylogenetic effects, are considerably reduced by virtue of the experimental design. In this study seed and seedling traits of three congeneric alien species in Europe, differing in their region of origin, invasion status and history (Impatiens glandulifera, I. parviflora, I. capensis), were compared with the native I. noli-tangere in laboratory and common garden experiments. Seeds of I. glandulifera required the shortest period of stratification, germinated well both under laboratory and experimental garden conditions and the seedlings produced more biomass than those of the other species. Seeds of I. parviflora required a longer period of stratification, had the highest percentage germination but seedling emergence in the experimental garden was poorer than in I. glandulifera. Neither of these two species invasive in the Czech Republic formed soil seed banks. The native I. noli-tangere had the lowest percentage germination and formed a short-term persistent seed bank. Impatiens capensis germinated well in the laboratory, had the highest seedling emergence in the garden and its seed remained viable in the soil for three years. This indicates that in terms of germination and emergence, this species is comparable with the two invasive alien congeners and there appear to be no constraints to its invasion in the Czech Republic where it does not occur yet. Its absence may be due to a low propagule pressure; in the national flora I. capensis is listed as a potential future invader without mentioning it being cultivated in this country. Our results indicate that differences in the invasiveness of three alien species of balsams in the temperate zone of Central Europe can be attributed, at least in part, to their differing performances in the early stages of their life cycle. The short period of time required for seed stratification and the high seedling biomass of I. glandulifera might have increased its invasion potential compared to other Impatiens species occurring in the Czech Republic.
We investigated the effects of different temperature regimes and dry storage on germination of H. mantegazzianum (Apiaceae, native to Caucasus) seeds in the laboratory and linked the results with studies of seasonal seed bank depletion in a common garden experiment and under field conditions. Seeds were collected at seven sites in the Slavkovský les region, Czech Republic, cold-stratified for 2 months and germinated at seven temperature regimes. Under all temperature regimes, fresh seeds germinated to significantly higher percentages than older (1, 2, 3 years) seeds. For all storage lengths, seeds germinated best at alternating day/night temperatures of 20/5 °C. The length of the germination period had a significant effect only at low constant temperatures of 2 and 6 °C, where germination percentage increased between 2 and 6 months. Seasonal germination exhibited a distinct pattern, with rapid depletion of seed bank by the first spring after seed burial. Non-dormant seeds were present in the soil early in spring and late in autumn. The higher summer temperatures prevented dormancy breaking and another cold period of at least two months below 10 °C was needed to bring non-germinated seeds out of dormancy. The results suggest that (1) seed dormancy of H. mantegazzianum was not completely broken until the first spring, but that some seeds re-enter or retain dormancy during high summer temperatures and that (2) the threshold needed for breaking the dormancy was achieved gradually during the cold autumn and winter months. However, in a small fraction of seeds the dormancy breaking process took several years. Of seeds buried in 10 different regions of the Czech Republic, on average 8.8% survived 1 year, 2.7% 2 years and 1.2% remained viable and dormant after 3 years of burial. The ability of even small fraction of H. mantegazzianum seeds to survive for at least 3 years can result in re-invasion of this species into controlled sites.