Infiltration of methyl viologen (MV, source of O2-) and Na-diethyldithiocarbamate (DDC, inhibitor of SOD) into wheat leaves resulted in the accumulation of active oxygen species and photo-oxidative damage to photosynthetic apparatus under both moderate and high irradiance. Exogenous antioxidants, ascorbate (ASA) and mannitol, scavenged active oxygen efficiently, protected the photosynthetic system from MV and DDC induced oxidative damage, and maintained high Fv/Fm [maximal photochemical efficiency of photosystem 2 (PS2) while all PS2 reaction centres are open], Fm/F0 (another expression for the maximal photochemical efficiency of PS2), ΦPS2 (actual quantum yield of PS2 under actinic irradiation), qP (photochemical quenching coefficient), PN (net photosynthetic rate), and lowered qNP (non-photochemical quenching coefficient) of the leaves kept under high irradiance and oxidative stress. Phenolic compounds used in these experiments, catechol (Cat), resorcinol (Res), and tannic acid (Tan), had similar anti-oxidative activity and protective effect on photosynthetic apparatus as ASA and mannitol. The anti-oxidative activity and the protective effect of phenolic compounds increased with increase in their concentration from 100 to 300 g m-3. The number and the position of hydroxyl group in phenolic molecules seemed to influence their antioxidative activity. and Hui Jie Zhao, Qi Zou.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675-750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675-710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated. and M. R. Amirjani, C. Sundqvist.
Measurements of reflectance in visible and near-infrared spectral regions were made on detached leaves of two crop species of different leaf morphology, structure, and water content (peanut and wheat) throughout progressive desiccation. Relative water content (RWC) was well correlated with water index (WI) but even better with the ratio of WI and normalized difference vegetation index. RWC was also significantly correlated with structural independent pigment index indicative of carotenoids/chlorophyll ratio. New indication is thus provided to assess leaf water content and apply simple and fast radiometric techniques for plant water stress management. and J. Peñuelas, Y. Inoue.
Cross stress of heat and high irradiance (HI) resulted in the accumulation of active oxygen species and photo-oxidative damage to photosynthetic apparatus of wheat leaves during grain development. Pre-treatment with calcium ion protected the photosynthetic system from oxidative damage by reducing O-2 production, inhibiting lipid peroxidation, and retarding electrolyte leakage from cell. Therefore, high Fv/Fm [maximal photochemical efficiency of photosystem 2 (PS2) while all PS2 reaction centres are open], Fm/F0 (another expression for the maximal photochemical efficiency of PS2), ΦPS2 (actual quantum yield of PS2 under actinic irradiation), qP (photochemical quenching coefficient), and PN (net photosynthetic rate) were maintained, and lower qNP (non-photochemical quenching coefficient) of the leaves was kept under heat and HI stress. EGTA (a chelant of calcium ion) and LaCl3 (a blocker of Ca2+ channel in cytoplasmic membrane) had the opposite effect. Thus Ca ion may help protect the photosynthetic system of wheat leaves from oxidative damage induced by the cross stress of heat and HI. and Hui-Jie Zhao, Ji-Fang Tan.
Wheat seedlings (Triticum aestivum L.) develop plastids (etioplasts and chloroplasts) which exhibit alterations in inner membrane organisation after treatment with Norflurazon (NF), an inhibitor of carotenoid biosynthesis. In dark-grown plants, it results in a decreased amount of partitions (contact zones) between prothylakoids. Under weak red radiation (WRR), plants contain chloroplasts devoid of grana. Using the fluorescent probe 9-amino acridine (9-AA), the average surface charge density of isolated prothylakoids (PTs) was -21.8±3.2 mC m-2 and -27.4±2.6 mC m-2 in the control and after treatment, respectively. Thylakoid membranes isolated from plants grown under WRR exhibited slightly more negative values, -23.5±2.9 mC m-2 and -29.0±2.1 mC m-2, in control and after NF treatment, respectively. The surface charge density of de-stacked thylakoids from greenhouse-grown untreated plants, containing extensive grana stacking, was -34.3±2.5 mC m-2. Assays using the fluorescent probe of DPH (1,6-diphenyl-1,3,5-hexatriene) showed a higher polarisation value when incorporated into thylakoids from NF-treated plants compared to untreated plants grown under WRR. The highest polarisation value was found in untreated plants grown in the greenhouse. This indicates a lower rotation transition of the probe in the lipid environment of thylakoids after NF treatment, which can be interpreted as more rigid membranes. Hence the surface charge density and the mobility of membrane components may play a major role for the formation of partitions in dark-grown plants and in the formation of grana in plants grown under WRR.
Photosynthetic electron transfer was studied in thylakoids isolated from control and DCMU-grown wheat (Triticum aestivum L.) seedlings. When exposed to high temperature (HT) and high iradiance (HI), thylakoids showed large variations in the photosynthetic electron transport activities and thylakoid membrane proteins. A drastic reduction in the rate of whole electron transport chain (H2O → MV) was envisaged in control thylakoids when exposed to HT and HI. Such reduction was mainly due to the loss of photosystem 2, PS2 (H2O → DCBQ) activity. The thylakoids isolated from seedlings grown in the presence of DCMU showed greater resistance to HT and HI treatment. The artificial exogenous electron donors MnCl2, DPC, and NH2OH failed to restore the HI induced loss of PS2 activity in both control and DCMU thylakoids. In contrast, addition of DPC and NH2OH significantly restored the HT induced loss of PS2 activity in control thylakoids and partially in DCMU thylakoids. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in control thylakoids was evidently due to the loss of 33, 23, and 17 kDa extrinsic polypeptides and 28-25 kDa LHCP polypeptides. and K. Muthuchelian, M. Bertamini, N. Nedunchezhian.