The last step for biosynthesis of c type cytochromes, indispensable for photosynthesis in cyanobacteria and plants, involves heme transport across the membrane and its covalent attachment to the apoprotein. In cyanobacteria, heme attachment occurs in the thylakoid lumen and probably also in the periplasm and requires at least four proteins, believed to be organized in intrinsic membrane protein complex. To allow isolation and identification of such complex, CcsB protein was tagged with 6xHis tag on its N terminus and expressed under the strong psbAII promoter in the cyanobacterium Synechocystis sp. PCC 6803. Similarly, CcsA protein was tagged with FLAG tag under the control of the same promoter. Although expression of both proteins under strong cyanobacterial promoter did not increase steady state contents of the CcsB protein, the fusion tags did not influence properties of the CcsB and CcsA proteins and the resulting mutants had the same phenotype as the wild type. Protein fraction containing CcsBHis protein was partially isolated from the solubilised membranes under native conditions.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675-750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675-710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated. and M. R. Amirjani, C. Sundqvist.
Naturally occurring veinless specimen of the swallowtail Papilio xuthus show an extremely aberrant colour pattern. In spite of the fact that we have no breeding data, these veinless specimen are provisionally called veins-reduced mutant. In these mutants seven longitudinal veins of the fore wing and five of the hind wing are absent. The absence of wing veins is associated with a loss of the broad black venous stripes that normally are present along the proximal portion of the veins. In addition, missing veins cause a loss of the dislocation of black bands in adjacent wing cells, so that what are discrete black segments in normal wings become continuous bands in the veinless wing. Computer simulations show that the morphology of the striped patterns on both the veinless and veined wing can be explained if the wing margin acts as an inductive source of pattern formation and the veins act simply as boundaries to the propagation of the signal from the wing margin. The vein-dependent patterns by contrast, require that the veins act as inductive sources, at least along their proximal portion. This dual role of wing veins is consistent with prior observations on the biology of colour pattern formation. The unique veinless colour pattern strongly supports the hypothesis that the wing margin is the dominant organiser of colour pattern in this species, and possibly in other Papilionidae.