Based on previously published data, the Czech Republic is regarded an endemic country of the onchocercid nematodes Dirofilaria immitis (Leidy, 1856) and Dirofilaria repens Railliet et Henry, 1911. Nevertheless, while cases of D. repens are commonly reported from dogs in South Moravia, no recent records of D. immitis are available. Therefore, the present study was performed to clarify the occurrence of both species of Dirofilaria Railliet et Henry, 1910. Blood samples of 551 dogs sampled during 2015 and 2016 were analysed microscopically for presence of microfilariae and blood sera were examined by IDEXX SNAP® 4Dx® test (IDEXX, USA). DNA from blood of microscopically positive dogs was extracted and PCR protocol amplifying fragment of cytochrome c oxidase I (COI) gene was performed; PCR products were then sequenced. All dogs from the Bohemian part of the Czech Republic were negative. The prevalence of D. repens in the Moravian region was 5.7 % (27/476). BLAST analyses of obtained sequences confirmed the presence of D. repens (99-100% identical to KX265049). All sampled animals showed a negative result for D. immitis antigen in IDEXX SNAP® 4Dx® test. Our study confirmed the previously reported occurrence of D. repens in South Moravia and revealed its spreading from the epicentre to the north and west. PCR with subsequent sequencing together with negative results for D. immitis antigen in IDEXX SNAP® 4Dx® test revealed only D. repens infection. A previously published autochthonous infection of dogs with D. immitis in South Moravia was not confirmed.
We studied variations in genetic, physiological, and ecological traits, and the phylogenetic relationship among sexual and parthenogenetic populations of Asobara japonica, a larval parasitoid of drosophilid flies, in order to understand how they adapt to local environments and have differentiated. The strain from Iriomote-jima (IR) differed from other Japanese strains in the nucleotide sequences of its cytochrome oxidase subunit I (COI) and in not undergoing diapause and having a shorter preimaginal period and a higher adult tolerance of cold. The strains other than IR showed a low level of nucleotide variation in COI but varied in their mode of reproduction; the strains from the Ryukyu Islands were sexual, whereas those from the main islands of Japan and Ogasawara were parthenogenetic. In addition, strains from higher latitudes generally showed a high incidence of diapause, although there were some exceptions. On the other hand, preimaginal period and adult cold tolerance varied little among the strains excluding IR, and pupal cold tolerance, oviposition preference and incidence of parasitism varied little among the strains including IR. Evolution and environmental adaptations in this species are discussed, particularly focusing on parthenogenetic populations.
Betasyringophiloidus Skoracki, 2011 is a genus of quill mites (Prostigmata: Syringophilidae) that is believed to contain mono-, steno- and polyxenous parasites associated with a wide range of passerine birds (Passeriformes) across the world. In this work we applied the DNA-barcode marker (mitochondrial cytochrome c oxidase subunit I gene fragment, COI) to verify whether Betasyringophiloidus schoeniclus (Skoracki, 2002) and Betasyringophiloidus seiuri (Clark, 1964) are actual steno- and polyxenous species associated with the currently recognised host ranges, or their populations are highly host-specific, cryptic species. Our results revealed that a population living on the Tristram's bunting Emberiza tristrami Swinhoe (Emberizidae) in Russia, so far classified as B. schoeniclus, is a new cryptic species Betasyringophiloidus emberizae sp. nov. Both topologies of the neighbor-joining and maximum likelihood phylogenetic trees as well as genetic distance (11.9% Kimura 2-parameter distance) (K2P) support species status of the mite population from E. tristrami. The same data support previously established conspecific status of B. seiuri found on the ovenbird Seiurus aurocapilla (Linnaeus) (Parulidae) (type host) and the northern waterthrush Parkesia noveboracensis (Gmelin) (Parulidae) and expand its range with a population found on a new host species Icterus pustulatus (Wagler) (Icteridae) with intraspecific K2P distance up to 1.9% and interpopulation distances ranging from 1.3 to 3.1%., Eliza Glowska, Lukasz Broda, Miroslawa Dabert., and Obsahuje bibliografii
The aim of the present work was to identify cryptic species in the Anopheles maculipennis and Culex pipiens complexes and to study the genetic structure of the dominant mosquito species Ochlerotatus caspius (Diptera: Culicidae) in the Province of Alessandria close to the vast area untreated rice fields in Piedmont, NW Italy. With the help of PCR-RFLP analysis, four members of the Anopheles maculipennis complex were identified: A. messeae, A. maculipennis, A. sacharovi and A. atroparvus. Only C. pipiens f. molestus was identified in 11 habitats studied in Piedmont. Partial sequences of the cytochrome c oxidase subunit 1 (COI) mitochondrial gene and the second internal transcribed spacer (ITS2) of nuclear ribosomal RNA genes for Italian O. caspius are reported here for the first time. The results indicate that this species diverged from Iranian representatives of this species about one million years ago. The great diversity of mosquito species in Piedmont considerably increases the risk of vector-borne diseases. and Asghar TALBALAGHI, Elena SHAIKEVICH.
Mango orchards in Pakistan are attacked by the scale insect, Drosicha mangiferae (Hemiptera: Monophlebidae), commonly called the "mango mealybug". This insect is univoltine, active from December through May and targets multiple host plants. We used DNA nucleotide sequences to characterize and determine the phylogenetic status of D. mangiferae. Mango mealybugs were collected from several tree species from different localities and patterns of phylogenetic and genetic diversity were examined at both nuclear (18S, ITS1) and mitochondrial (COI) genes. Phylogenetic analysis confirms that the mango mealybug belongs to the family Monophlebidae. Minor genetic differences in both the ITS1 and the COI barcode region were noted among D. mangiferae collected from different geographic localities. These genetic differences revealed the existence of two genotypes of D. mangiferae that are region specific but not host-specific. and Muhammad Ashfaq, Jehan Ara, Ali Raza Noor, Paul D.N. Hebert, Shahid Mansoor.
We present a molecular phylogeny incorporating all five species of the Palaearctic geometrid genus Lythria, based on a 2810-bp combined data matrix comprising the full sequence of the mitochondrial gene cytochrome oxidase subunit one (COI) and fragments of the nuclear genes elongation factor 1 alpha (EF-1α) and wingless (wgl). L. venustata, which was recently rediscovered from Kazakhstan, is shown to be sister taxon to all other members of the genus. The remaining species within the genus form two pairs of sister species: L. purpuraria groups together with L. plumularia, and L. cruentaria with L. sanguinaria. The phylogeny is well supported by characters of the male genitalia of all Lythria species. In addition to the molecular phylogeny of the genus Lythria, we illustrate the external appearance of L. venustata for the first time and describe the anatomy of its male genitalia.
We found unusual digenean intramolluscan stages, sporocysts and cercariae, in gastropods Sulcospira dautzenbergiana (Morelet) (Caenogastropoda: Pachychilidae) from Southern Vietnam and named them Cercaria cattieni 1. These cercariae have a stylet and thus belong to the Xiphidiata. However, such combination of characters as extremely large body size and I-shaped excretory bladder has not been found before in any other xiphidiocercariae. We obtained COI, ITS1, 5.8S + ITS2, and 28S rDNA sequences for C. cattieni 1. The latter allowed us to specify the phylogenetic position of the discovered cercariae: C. cattieni 1 falls within the superfamily Microphalloidea and is most closely grouped to Pachypsolus irroratus (Rudolphi, 1819) (Pachypsolidae), the sea turtle parasite. Information on the family Pachypsolidae is limited. Judging from the molecular phylogeny, C. cattieni 1 might be the larva of the Pachypsolidae, documented for the first time.
The sterrhine loopers Timandra griseata and T. comae have been treated as distinct species since 1994. However, morphological differences between the taxa are minor and therefore their status has often been disputed. Here, we present a molecular phylogenetic study, which separates T. griseata and T. comae into different clades. Altogether, 43 Timandra specimens from eight European countries were studied. The phylogeny is based on a comparative sequence analysis of mitochondrial genes coding for the cytochrome C oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1). Nevertheless, a single individual of both species was assigned to the "wrong" clade. The symplesiomorphy of T. griseata and T. comae is considered to be a result of introgressive hybridization. Conditions that could lead to the hybridization of T. griseata and T. comae are discussed, as well as the likely distribution history of these taxa in Northern Europe. Results of the current analysis are in favour of retaining the species status of T. griseata and T. comae.
The extensive genus Erebia is divided into several groups of species according to phylogenetic relatedness. The species Erebia medusa was assigned to the medusa group and E. epipsodea to the alberganus group. A detailed study of the morphology of their copulatory organs indicated that these species are closely related and based on this E. epipsodea was transferred to the medusa group. Phylogenetic analyses of the gene sequences of mitochondrial cytochrome C oxidase subunit I (COI) and mitochondrial NADH dehydrogenase subunit 1 (ND1) confirm that E. medusa and E. epipsodea are closely related. A possible scenario is that the North American species, E. episodea, evolved after exclusion/isolation from E. medusa, whose current centre of distribution is in Europe., Martina Šemeláková, Peter Pristaš, Lubomír Panigaj., and Obsahuje seznam literatury
Many factors contribute to the 'invasive potential' of species or populations. It has been suggested that the rate of genetic evolution of a species and the amount of genetic diversity upon which selection can act may play a role in invasiveness. In this study, we examine whether invasive species have a higher relative pace of molecular evolution as compared with closely related non-invasive species, as well as examine the genetic diversity between invasive and closely related species. To do this, we used mitochondrial cytochrome c oxidase subunit I sequences of 35 species with a European native range that are invasive in North America. Unique to molecular rate studies, we permuted across sequences when comparing each invasive species with its sister clade species, incorporating a range of recorded genetic variation within species using 405,765 total combinations of invasive, sister, and outgroup sequences. We observed no significant trend in relative molecular rates between invasive and non-invasive sister clade species, nor in intraspecific genetic diversity, suggesting that differences in invasive status between closely related lineages are not strongly determined by the relative overall pace of genetic evolution or molecular genetic diversity. We support previous observations of more often higher genetic diversity in native than invaded ranges using available data for this genetic region.