We present a molecular phylogeny incorporating all five species of the Palaearctic geometrid genus Lythria, based on a 2810-bp combined data matrix comprising the full sequence of the mitochondrial gene cytochrome oxidase subunit one (COI) and fragments of the nuclear genes elongation factor 1 alpha (EF-1α) and wingless (wgl). L. venustata, which was recently rediscovered from Kazakhstan, is shown to be sister taxon to all other members of the genus. The remaining species within the genus form two pairs of sister species: L. purpuraria groups together with L. plumularia, and L. cruentaria with L. sanguinaria. The phylogeny is well supported by characters of the male genitalia of all Lythria species. In addition to the molecular phylogeny of the genus Lythria, we illustrate the external appearance of L. venustata for the first time and describe the anatomy of its male genitalia.
The sterrhine loopers Timandra griseata and T. comae have been treated as distinct species since 1994. However, morphological differences between the taxa are minor and therefore their status has often been disputed. Here, we present a molecular phylogenetic study, which separates T. griseata and T. comae into different clades. Altogether, 43 Timandra specimens from eight European countries were studied. The phylogeny is based on a comparative sequence analysis of mitochondrial genes coding for the cytochrome C oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1). Nevertheless, a single individual of both species was assigned to the "wrong" clade. The symplesiomorphy of T. griseata and T. comae is considered to be a result of introgressive hybridization. Conditions that could lead to the hybridization of T. griseata and T. comae are discussed, as well as the likely distribution history of these taxa in Northern Europe. Results of the current analysis are in favour of retaining the species status of T. griseata and T. comae.