Khawia abbottinae sp. n. is described from the Chinese false gudgeon, Abbottina rivularis (Basilewsky) (Cyprinidae: Gobioninae), from the Yangtze River basin in China. The new species can be distinguished from the congeneric species mainly by the arrangements of the testes, which form two longitudinal bands (other congeneric species have the testes irregularly scattered throughout the testicular region) and their number (at maximum 85 testes versus at least 160 in the other Khawia spp.), and the morphology of the scolex, which varies from cuneiform to widely bulbate scolex, being separated from the remaining body by a short neck and possessing a smooth, blunt or rounded anterior margin. Other typical features of K. abbottinae are its small size (total length less than 1.5 cm) and body shape, with the maximum width at its first third. The distinct status of the new species was confirmed by molecular data (ssrDNA and ITS1 sequences). Phylogenetic analyses revealed a close relationship of the new species with K. rossittensis (Szidat, 1937) and K. parva (Zmeev, 1936), parasites of crucian carp and goldfish (Carassius spp.), but both species markedly differ from K. abbottinae in their morphology. Until now, five valid species of Khawia (K. abbottinae, K. japonensis, K. rossittensis, K. saurogobii and K. sinensis) have been reported from China.
Bemisia tabaci (Gennadius) is a worldwide pest of vegetable, ornamental and field crops. Biotype B of B. tabaci, which is economically most important of the biotypes, is distinct from all other biotypes (non-B biotypes). Fourteen populations of B. tabaci were collected from different localities and host plants in the Chinese mainland and Taiwan, namely TWYDH (tassel flower, Taiwan), HNYC (tobacco, Hainan), GXNG (pumpkin, Guangxi), GDYPH (poinsettia, Guangdong), GDBSM (croton, Guangdong), GDFS (Chinese hibiscus, Guangdong), SHYPH (poinsettia, Shanghai), FJGS (sweet potato, Fujian), SDFQ (tomato, Shandong), BJXHL (squash, Beijing), XJQZ (eggplant, Xinjiang), XJYPH (poinsettia, Xinjiang), XJJM (abutilon, Xinjiang) and XJMH (cotton, Xinjiang). The internally transcribed spacer 1 sequences (ITS1) of ribosomal DNA of B biotype and other biotypes were sequenced and analyzed. The B biotype-specific primers were then designed for rapid identification of B biotype of B. tabaci. The results show that the diagnostic primer only gave a positive result with the B biotype. This is the first report of a rapid means of identifying B. tabaci B biotype using a diagnostic primer based on ribosomal DNA. This protocol is especially useful for identifying the B biotype in Bemisia populations consisting of several biotypes.
Mango orchards in Pakistan are attacked by the scale insect, Drosicha mangiferae (Hemiptera: Monophlebidae), commonly called the "mango mealybug". This insect is univoltine, active from December through May and targets multiple host plants. We used DNA nucleotide sequences to characterize and determine the phylogenetic status of D. mangiferae. Mango mealybugs were collected from several tree species from different localities and patterns of phylogenetic and genetic diversity were examined at both nuclear (18S, ITS1) and mitochondrial (COI) genes. Phylogenetic analysis confirms that the mango mealybug belongs to the family Monophlebidae. Minor genetic differences in both the ITS1 and the COI barcode region were noted among D. mangiferae collected from different geographic localities. These genetic differences revealed the existence of two genotypes of D. mangiferae that are region specific but not host-specific. and Muhammad Ashfaq, Jehan Ara, Ali Raza Noor, Paul D.N. Hebert, Shahid Mansoor.
The present study describes the anatomy and surface topography of the metacercaria of Microphallus primas (Jägerskiöld, 1909) infecting the shore crab Carcinus maenas (L.) in Aveiro estuary, northern Portugal. The metacercaria species identification resulted from the combined use of morphological and molecular data, particularly the 28S rDNA gene. The metacercariae encysted preferentially in the host's hepatopancreas and also in the gonads. Isolated cysts were present in two distinct forms, spherical and oval, and were shown to be the identical species by the internal transcribed spacer 1 (ITS1) sequence. Chemically excysted metacercariae were studied by light (LM) and scanning electron microscopy (SEM). Their specific characteristics observed include the particular aspect of the vesiculo-prostatic pouch surrounded by a very thin membrane, the presence of a prominent muscular papilla, and an obvious metraterm. The dorsal and ventral tegumental surfaces of the metacercaria were densely packed with similar squamous spines, which decreased in number and size towards the hindbody. The edges of the posterior and ventral face of the body were coated with numerous microvilli, whose function remains unknown. In order to identify the species of metacercariae, we compared a 28S partial rDNA sequence of the two forms of cysts with the same 28S partial region of M. primas available in GenBank. With this comparison, we determined that the sequences had a 100% similarity and therefore belonged to the same species, i.e., M. primas.
We found unusual digenean intramolluscan stages, sporocysts and cercariae, in gastropods Sulcospira dautzenbergiana (Morelet) (Caenogastropoda: Pachychilidae) from Southern Vietnam and named them Cercaria cattieni 1. These cercariae have a stylet and thus belong to the Xiphidiata. However, such combination of characters as extremely large body size and I-shaped excretory bladder has not been found before in any other xiphidiocercariae. We obtained COI, ITS1, 5.8S + ITS2, and 28S rDNA sequences for C. cattieni 1. The latter allowed us to specify the phylogenetic position of the discovered cercariae: C. cattieni 1 falls within the superfamily Microphalloidea and is most closely grouped to Pachypsolus irroratus (Rudolphi, 1819) (Pachypsolidae), the sea turtle parasite. Information on the family Pachypsolidae is limited. Judging from the molecular phylogeny, C. cattieni 1 might be the larva of the Pachypsolidae, documented for the first time.