Variations in leaf gas-exchange characteristics, PSII activity, leaf pigments, and tuber yield were investigated in seven wild and one cultivated species of Dioscorea from Koraput, India, in order to find out their overall adaptability to the environment. The leaf photosynthetic rate, transpiration, stomatal conductance, water-use efficiency, carboxylation efficiency, and photosynthetic pigments were significantly higher in some wild species compared to the cultivated species. In addition, some wild species showed better photochemical efficiency of PSII, photochemical quenching, and electron transport rate in comparison to cultivated one. Furthermore, leaf dry matter accumulation and tuber yield was also higher in some wild species compared to the cultivated species. Taken together, the wild species, such as D. oppositifolia, D. hamiltonii, and D. pubera, showed the superior photosynthetic efficiency compared to the cultivated D. alata and they could be used for future crop improvement programs., B. Padhan, D. Panda., and Obsahuje bibliografii
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for
ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion., S.-B. Zhang, J.-L. Zhang., and Obsahuje seznam literatury
Modern tomato (Solanum lycopersicum L.) breeding has mainly focused on increasing productivity under unlimited watering. In contrast, some Mediterranean accessions have been traditionally cultivated under water shortage and selected on the basis of their water-use efficiency (WUE). Ramellet and Penjar landraces were planted with other traditional, old and modern inbreeds, under full irrigation. In order to found differences between the tomato accessions, gas-exchange and leaf morphology measurements were performed. Despite high variability, Ramellet and Penjar presented clear differences compared to modern cultivars, mostly related to leaf morphology and photosynthetic traits, while no differences were found in WUE. Results highlighted that better leaf CO2 conductance might be a main factor determining the improvement of net CO2 assimilation and WUE., M. Fullana-Pericàs, M. À. Conesa, S. Soler, M. Ribas-Carbó, A. Granell, J. Galmés., and Obsahuje bibliografii
The present research was conducted to assess physiological responses of ‘Malas-e-Saveh’ (Malas) and ‘Shishe-Kab’ (Shishe) pomegranates to water of different salt content and electrical conductivity (1.05, 4.61, and 7.46 dS m-1). Both cultivars showed a reduced trunk length due to salinity. Relative water content and stomatal conductivity of both cultivars were significantly reduced under salt stress, but ion leakage increased. In both cultivars, total chlorophyll (Chl) and carbohydrates decreased with rise in salinity, while proline accumulation increased. With salinity increment, the Chl fluorescence parameters (maximum photochemical efficiency of PSII and effective quantum yield of PSII) declined significantly in both cultivars, with higher reduction observed in Shishe. Generally, more Na+ accumulated in shoots and more Cl- was observed in leaves. Cl- accumulation increased by salinity in leaves of Malas, but it was reduced in Shishe. The K+/Na+ ratio in leaves decreased in both cultivars by salinity increment. Malas was less affected by osmotic effects of NaCl, but it accumulated more Cl- in its leaves. Thus, Malas might be more affected by negative effects of salinity., M. Khayyat, A. Tehranifar, G. H. Davarynejad, M. H. Sayyari-Zahan., and Obsahuje bibliografii
Tomato samples were collected from the field of Absheron peninsula in Azerbaijan in order to evaluate the incidence of main Tobamoviruses. According to results of serological and molecular tests, Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), and Pepper mild mottle virus (PMMoV) were detected as single and mixed infections (TMV + PMMoV; ToMV + PMMoV) in various tomato samples. It was found that Tobamovirus infection caused an increase in the content of malondialdehyde, alterations in the activities of peroxidase enzymes and quantitative and qualitative changes in their molecular isoforms. A comparison of thylakoid membrane polypeptides from virus-infected leaves indicated a decrease in the content of the thylakoid membrane polypeptides with molecular masses of 123, 55, 47, 33, 28-24, 17, and 15 kD. PSII efficiency and the content of chlorophylls (a and b) were significantly lower in the virus-infected leaves., I. M. Huseynova, S. M. Mirzayeva, N. F. Sultanova, D. R. Aliyeva, N. Sh. Mustafayev, J. A. Aliyev., and Obsahuje bibliografii
Dependence of ATP hydrolysis kinetics by the chloroplast coupling factor (CF1) on medium viscosity was studied at varying temperatures. For samples with oxidized and reduced CF1 γ-subunit, this dependence was shown to be described by Cramers’ relationship k - (η/ηo)-n, where k is the reaction rate constant, η/ηo is the medium/water viscosity ratio, and 0 < n < 1. Transition of the γ-subunit from its reduced to oxidized state was accompanied by increasing n value, which is indicative of increasing friction losses between certain enzyme sections and the solution. The increased medium viscosity produced no effect on the reaction activation energy which appeared to be almost the same for the both enzyme states. The molecular mechanisms responsible for CF1 activity loss in viscous media are discussed., A.N. Malyan., and Obsahuje bibliografii
Among various epiphytic ferns found in the Brazilian Atlantic Forest, we studied Vittaria lineata (L.) Smith (Polypodiopsida, Pteridaceae). Anatomical characterization of the leaf was carried out by light microscopy, fluorescence microscopy, and scanning electron microscopy. V. lineata possesses succulent leaves with two longitudinal furrows on the abaxial surface. We observed abundant stomata inside the furrows, glandular trichomes, paraphises, and sporangia. We examined malate concentrations in leaves, relative water content (RWC), photosynthetic pigments, and chlorophyll (Chl) a fluorescence in control, water-deficient, and abscisic acid (ABA)-treated plants. Plants subjected to drought stress (DS) and treated by exogenous ABA showed significant increase in the malate concentration, demonstrating nocturnal acidification. These findings suggest that V. lineata could change its mode of carbon fixation from C3 to the CAM pathway in response to drought. No significant changes in RWC were observed among treatments. Moreover, although plants subjected to stress treatments showed a significant decline in the contents of Chl a and b, the concentrations of carotenoids were stable. Photosynthetic parameters obtained from rapid light curves showed a significant decrease after DS and ABA treatments., B. D. Minardi, A. P. L. Voytena, M. Santos, Á. M. Randi., and Obsahuje bibliografii
Responses to drought were studied using two maize inbred lines (B76 and B106) and a commercial maize hybrid (Zea mays L. cv. Silver Queen) with differing resistance to abiotic stress. Maize seedlings were grown in pots in controlled environment chambers for 17 days and watering was withheld from one half the plants for an additional 11 days. On the final treatment date, leaf water potentials did not differ among genotypes and were -0.84 and -1.49 MPa in the water sufficient and insufficient treatments, respectively. Greater rates of CO2 assimilation were retained by the stress tolerant maize inbred line, B76, in comparison to the other two genotypes 11 days after watering was withheld. Rates of CO2 assimilation for all three genotypes were unaffected by decreasing the measurement O2 concentration from 21 to 2% (v/v). Activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), and NADP malate dehydrogenase were inhibited from 25 to 49% by the water deficiency treatment. Genotypic differences also were detected for the activities of NADP-ME and for PEPC. Changes of transcript abundance for the three C4 pathway enzymes also varied among watering treatments and genotypes. However, examples where transcripts decreased due to drought were associated with the two stress susceptible genotypes. The above results showed that enzymes in the C4 photosynthetic pathway were less inhibited by drought in stress tolerant compared to stress susceptible maize genotypes., R. Sicher, J. Bunce, J. Barnaby, B. Bailey., and Obsahuje bibliografii
On the occasion of the 50th anniversary of the international journal Photosynthetica in 2017 we briefly report on the establishment of this journal and on Dr. Zdeněk Šesták, the renowned researcher of photosynthesis processes who, in cooperation with the Czechoslovak Academy of Sciences, founded this essential science journal in Prague in 1967., H. K. Lichtenthaler., Obsahuje bibliografii, and Ozvláštněné číslování stránek článku 1-6. teprve na ně se napojuje pokračování stránkování navazující na 1. číslo časopisu