Changes in chloroplastidic pigments, gas exchange and carbohydrate concentrations were assessed during the rapid initial expansion of C. guianensis leaflet. Leaves at metaphyll stage were tagged and assessments were carried out 14, 17, 20, 23, 27, and 31 days later. Pigments synthesis, distribution and accumulation were uniform among leaflet sections (basal, median and apical). Chlorophyll (Chl) a, Chl b, Chl (a+b), and total carotenoids (Car) concentrations were significantly increased after 27 days from metaphyll, and the most expressive increases were parallel to lower specific leaflet area. Chl a/b was lower on day 14 and it was increased on subsequent days. Negative net photosynthesis rate (PN), and the lowest stomatal conductance (gs) and transpiration (E) were registered on day 14, following significant increases on subsequent days. The Chl (a+b) and Chl a effects on PN were more expressive until day 20. Intercellular to ambient CO2 concentration ratio (Ci/Ca) was higher on day 14 and lower on subsequent days, and no stomatal limitation to CO2 influx inside leaflets was observed. Leaflet temperature was almost constant (ca. 35°C) during leaflet development. Sucrose and starch concentrations were increased in parallel to increases in PN. Altogether, these results highlight the main physiological changes during C. guianensis leaflet expansion and they should be considered in future experiments focusing on factors affecting PN in this species. and F. K. C. Moraes ... [et al.].
The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm2 cm-2 d-1, 0.709 mg mg-1 d-1, respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (PN), stomatal conductance (g s), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 µmol (CO2) m-2 s-1, 0.090 mol (H2O) m-2 s-1, and 1.03±0.08 mg g-1, respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and P N. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 µm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June - end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm-2) at full leaf expansion was indicative of compact leaves (2028±100 cells mm-2). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex. and L. Gratani, A. Bonito.
LED lamps with various combinations of red (R) and blue (B) wavelengths were used to supplement sunlight for the growth of a heat-resistant (HR) and heat-sensitive (HS) recombinant inbred lines (RIL) of lettuce. The RB-LED ratios were 100R:0B (0B), 92R:8B (8B), 84R:16B (16B), and 76R:24B (24B) with an equal PPFD of 100 μmol m-2 s-1. The greatest leaf expansion rates were observed at 8B for both genotypes. All HR-RILs had similar values of growth parameters and specific leaf area (SLA). However, higher values of growth parameters were observed in HS-RIL with 0B, 8B, and 16B than that under 24B and sunlight. Furthermore, HS-RIL had higher SLA under 0B compared to other conditions. Photosynthetic light-use efficiency and maximal oxygen evolution rate were the lowest under 8B for both genotypes. The quality of LED lighting, if provided, seemed to implicate genotype dependence, probably as a result of their different sensitivities to heat stress., T. W. Choong, J. He, L. Qin, S. K. Lee., and Obsahuje bibliografii
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant. and Y. K. Markovska, D. S. Dimitrov.
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for
ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion., S.-B. Zhang, J.-L. Zhang., and Obsahuje seznam literatury