Attention-deficit/hyperactivity disorder (ADHD) is a mental disorder with a heterogeneous origin with a global incidence that continues to grow. Its causes and pathophysiological mechanisms are not fully understood. It includes a combination of persistent symptoms such as difficulty in concentration, hyperactivity and impulsive behavior. Maternal methamphetamine (MA) abuse is a serious problem worldwide, it can lead to behavioral changes in their offspring that have similarities with behavioral changes seen in children with ADHD. There are several types of ADHD animal models, e.g. genetic models, pharmacologically, chemically and exogenously induced models. One of the exogenously induced ADHD models is the hypoxia-induced model. Our studies, as well as those of others, have demonstrated that maternal MA exposure can lead to abnormalities in the placenta and umbilical cord that result in prenatal hypoxia as well as fetal malnutrition that can result in irreversible changes to experimental animals. Therefore, the aim the present study was to compare the cognitive impairments in MA exposure model with those in established model of ADHD – prenatal hypoxia model, to test whether MA exposure is a valid model of ADHD. Pregnant Wistar rats were divided into four groups based on their gestational exposure to MA: (1) daily subcutaneous injections of MA (5 mg/kg), (2) saline injections at the same time and volume, (3) daily 1-hr hypoxia (10 % O2), and (4) no gestational exposure (controls). Male rat offspring were tested for short-term memory in the Novel Object Recognition Test and the Object Location Test between postnatal days 35 and 40. Also their locomotor activity in both tests was measured. Based on the present results, it seems that prenatal MA exposure is not the best animal model for ADHD since it shows corresponding symptoms only in certain measures. Given our previous results supporting our hypothesis, more experiments are needed to further test possible use of prenatal MA exposure as an animal model of the ADHD.
The design, build and test of a re-programmable neural switch (RNS) are carried out. The function of such a switch is to operate as a synaptic processor behaving in an adaptive manner and suitable to be used as a compact programmable device with other artificial neural network hardware. Interaction between constituent materials forming the switch is discussed and carrier interaction during the Programming cycles is explained. Programmability of the switch is proved to be bi-directional and reversible with hysteresis effect which is due to excess charge storage.
Extremely low-frequency magnetic field (ELF-MF) has been suggested to influence the cognitive capability but this should be dynamically evaluated in a longitudinal study. Previous training can affect performance, but the influence under magnetic field is unclear. This study aims to evaluate the effects of previous training and ELF-MF exposure on learning and memory using the Morris water maze (MWM). Sprague-Dawley rats were subjected to MWM training, ELF-MF exposure (50 Hz, 100 μT), or ELF-MF exposure combined with MWM training for 90 days. Normal rats were used as controls. The MWM was used to test. The data show that the rats exposed to training and ELF-MF with training performed better on spatial acquisition when re-tested. However, during the probe trial the rats showed no change between the training phase and the test phase. Compared with the control group, the ELF-MF group showed no significant differences. These results confirm that previous training can improve the learning and memory capabilities regarding spatial acquisition in the MWM and this effect can last for at least 90 days. However, this improvement in learning and memory capabilities was not observed during the probe trial. Furthermore, ELF-MF exposure did not interfere with the improvement in learning and memory capabilities., Y. Li, C. Zhang, T. Song., and Obsahuje bibliografii
Animal models of neuropsychiatric disorders are current topics in behavioral neuroscience. Application of non-competitive antagonists of NMDA receptors (such as MK-801) was proposed as a model of schizophrenia, as it leads to specific behavioral alterations, which are partly analogous to human psychotic symptoms. This study examined an animal model of schizophrenia induced by a systemic application of MK-801 (0.15 and 0.20 mg/kg) into rats tested in the active allothetic place avoidance (AAPA) task. Previous studies suggested that MK-801 may interact in vivo with other neurotransmitter systems, including noradrenergic system. Our experiments therefore evaluated the hypothesis that both locomotor stimulation and deficit in avoidance behavior in AAPA task induced by this drug would be reversible by application of alpha1-adrenergic antagonist prazosin (1 and 2 mg/kg). The results showed that both doses of prazosin partia lly reversed hyperlocomotion induced by higher doses of MK-801 and an avoidance deficit measured as number of entrances into the shock sector. Interestingly, no effect of prazosin on the MK-801-induced decrease of maximum time between two entrances (another measure of cognitive performance) was observed. These results support previous data showing that prazosin can compensate for the hyperlocomotion induced by MK-801 and newly show that this partial reduction sustains even in the forced locomotor conditions, which are involved in the AAPA task. The study also shows that certain parameters of avoidance efficiency may be closely related to locomotor activity, whereas other measures of cognition may more selectively reflect cognitive changes., A. Stuchlík, T. Petrásek, K. Valeš., and Obsahuje seznam literatury
The aim of this study was to inve stigate the effect of prenatal methamphetamine (MA) exposure and application of the same drug in adulthood on cognitive functions of adult female rats. Animals were prenatally exposed to MA (5 mg/kg) or saline (control group). The cognitive function was tested as ability of spatial learning in the Morris Water Maze (MWM). Each day of the experiment animals received an injection of MA (1 mg/kg) or saline. Our results demonstrated that prenatal MA exposure did not affect the latency to reach the hidden platform or the distance traveled during the Place Navigation Test; however, the speed of swimming was increased in prenatally MA-exposed rats compared to controls regardless of the treatment in adulthood. MA treatment in adulthood increased the latency and distance when compared to controls regardless of the prenatal exposure. Neither prenatal exposure, nor tr eatment in adulthood affected memory retrieval. As far as the estrous cycle is concerned, our results showed that prenatally MA-exposed females in proestrus/estrus swam faster than females in diestrus. This effect of estrous cycle was not apparent in control females. In conclusion, our results indicate that postnatal, but not prenatal exposure to MA affects learning of adult female rats., E. Macúchová, K. Nohejlová-Deykun, R. Šlamberová., and Obsahuje bibliografii a bibliografické odkazy
a1_In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic -ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG -saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituat ing to the environment in the repeated spatial environment, but rats with immuno - or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno - or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS - lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory;, a2_(iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electr olytic or ibotenic lesions, but not saporin., M. G. Dashniani, M. A. Burjanadze, T. L. Naneishvili, N. C. Chkhikvishvili, G. V. Beselia, L. B. Kruashvili, N. O. Pochkhidze, M. R. Chighladze., and Obsahuje bibliografii
Different mental operations were expected in the late phase of intracerebral ERPs obtained in the visual oddball task with mental counting. Therefore we searched for late divergences of target and nontarget ERPs followed by components exceeding the temporal window of the P300 wave. Electrical activity from 152 brain regions of 14 epileptic patients was recorded by means of depth electrodes. Average target and nontarget records from 1800 ms long EEG periods free of epileptic activity were compared. Late divergence preceded by almost identical course of the target and nontarget ERPs was found in 16 brain regions of 6 patients. The mean latency of the divergence point was 570±93 ms after the stimulus onset. The target post-divergence section of the ERP differed from the nontarget one by opposite polarity, different latency of the components, or even different number of the components. Generators of post-divergence ERP components were found in the parahippocampal gyrus, superior, middle and inferior temporal gyri, amygdala, and fronto-orbital cortex. Finding of late divergence indicates that functional differences exist even not sooner than during the final phase of the task., A. Damborská ... [et al.]., and Obsahuje seznam literatury
During the early postnatal age environmental signals underlie the development of sensory systems. The visual system is considered as an appropriate system to evaluate role of sensory experience in postnatal development of sensory systems. This study was made to assess the effect of visual deprivation on strategy of arm selection in navigation of radial arm maze. Six-week-old light- (LR, control) and dark-reared (DR) rats were trained for correct choices and adjacent arms tasks. Our results showed that both the LR and DR animals equally selected correct arms. In the adjacent arms task, however, the control group significantly outperformed the DR animals. While the LR males and females displayed some differences in performing the tasks, no sex dependency was found in the performance of the DR group. These findings indicate that the lack of visual experience is likely to influence the strategy selection as well as sex differences. Thus the difference in the performance of LR and DR animals seems to be due to the male rather than female behavior., M. Salami., and Obsahuje bibliografii a bibliografické odkazy
Several diffusion tensor imaging (DTI) studies have reported on the anatomical neural tracts between the amygdala and specific brain regions. However, no study on the neural connectivity of the amygdala has been reported. In the current study, using probabilistic DTI tractography, we attempted to investigate the neural connectivity of the amygdala in normal subjects. Forty eight healthy subjects were recruited for this study. A seed region of interest was drawn at the amygdala using the FMRIB Software Library based on probabilistic DTI tractography. Connectivity was defined as the incidence of connection between the amygdala and each brain region at the threshold of 1 and 5 streamlines. The amygdala showed 100% connectivity to the hippocampus, thalamus, hypothalamus, and medial temporal cortex regardless of the thresholds. In contrast, regarding the thresholds of 1 and 5 streamlines, the amygdala showed high conncetivity (over 60%) to the globus pallidus (100% and 92.7%), brainstem (83.3% and 78.1%), putamen (72.9% and 63.5%), occipito-temporal cortex (72.9% and 67.7%), orbitofrontal cortex (70.8 and 43.8%), caudate nucleus (63.5% and 45.8%), and ventromedial prefrontal cortex (63.5% and 31.3%), respectively. The amygdala showed high connectivity to the hippocampus, thalamus, hypothalamus, medial temporal cortex, basal ganglia, brainstem, occipito-temporal cortex, orbitofrontal cortex, and ventromedial prefrontal cortex. We believe that the methods and results of this study provide useful information to clinicians and researchers studying the amygdala.
Spatial navigation comprises a widely-studied complex of animal behaviors. Its study offers many methodological advantages over other approaches, enabling assessment of a variety of experimental questions and the possibility to compare the results across different species. Spatial navigation in laboratory animals is often considered a model of higher human cognitive functions including declarative memory. Almost fifteen years ago, a novel dry-arena task for rodents was designed in our laboratory, originally named the place avoidance task, and later a modification of this approach was established and called active place avoidance task. It employs a continuously rotating arena, upon which animals are trained to avoid a stable sector defined according to room-frame coordina tes. This review describes the development of the place avoidance tasks, evaluates the cognitive processes associated with performance and explores the application of place avoidance in the testing of spatial learning after neuropharmacological, lesion and other experimental manipulations., A. Stuchlík ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy