The present study examined the hypothesis that the extension of noxious effect of methamphetamine (MA) on maternal behavior and postnatal development on the pups may differ in dependence with time of application. Female rats were injected with MA (5 mg/kg) or saline during first (embryonic day (ED) 1-11) or second (ED 12-22) half of gestation. Our results demonstrated that MA exposure on ED 12-22 led to decreased birth weight and weight gained during lactation period relative to rats treated on ED 1-11. Both sexes treated prenatally with MA on ED 1-11 opened eyes earlier compared to animals treated on ED 12-22. As a matter of sensorimotor development application of MA on ED 1-11 impaired the righting reflex, while MA exposure on ED 12-22 impaired the performance of beam balance test in male rats. There were no differences in maternal behavior. Therefore, it seems that MA exposure in the first half of the gestation impaired the early sensorimotor development that is under control of the brain stem, while the MA exposure in the second half of gestation affected the beam balance performance that is dependent on the function of the cerebellum., M. Malinová-Ševčíková, I. Hrebíčková, E. Macúchová, E. Nová, M. Pometlová, R. Šlamberová., and Obsahuje bibliografii
Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drugseeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test., R. Šlamberová, ... [et al.]., and Obsahuje seznam literatury
Behavioral sensitization is defined as augmented psychomotor activity, which can be observed after drug re-administration following withdrawal of repeated drug exposure. It has been shown that abuse of one drug can lead to increased sensitivity to certain other drugs. This effect of developed general drug sensitivity is called cross-sensitization and has been reported between drugs with similar as well as different mechanisms of action. There is growing evidence that exposure to drugs in utero not only causes birth defects and delays in infant development, but also impairs the neural reward pathways, in the brains of developing offspring, in such a way that it can increase the tendency for drug addiction later in life. This review summarizes the results of preclinical studies that focused on testing
behavioral cross-sensitization, after prenatal methamphetamine exposure, to drugs administered in adulthood, with both similar and different mechanisms of action. Traditionally, behavioral sensitization has been examined using the Open field or the Laboras Test to record locomotor activity, and the Conditioned Place Preference and Self-administration test to examine drugseeking behavior. However, it seems that prenatal drug exposure can sensitize animals not only to the locomotor-stimulating and conditioning effects of drugs, but may also be responsible for modified responses to various drug effects.
The aim of this study was to inve stigate the effect of prenatal methamphetamine (MA) exposure and application of the same drug in adulthood on cognitive functions of adult female rats. Animals were prenatally exposed to MA (5 mg/kg) or saline (control group). The cognitive function was tested as ability of spatial learning in the Morris Water Maze (MWM). Each day of the experiment animals received an injection of MA (1 mg/kg) or saline. Our results demonstrated that prenatal MA exposure did not affect the latency to reach the hidden platform or the distance traveled during the Place Navigation Test; however, the speed of swimming was increased in prenatally MA-exposed rats compared to controls regardless of the treatment in adulthood. MA treatment in adulthood increased the latency and distance when compared to controls regardless of the prenatal exposure. Neither prenatal exposure, nor tr eatment in adulthood affected memory retrieval. As far as the estrous cycle is concerned, our results showed that prenatally MA-exposed females in proestrus/estrus swam faster than females in diestrus. This effect of estrous cycle was not apparent in control females. In conclusion, our results indicate that postnatal, but not prenatal exposure to MA affects learning of adult female rats., E. Macúchová, K. Nohejlová-Deykun, R. Šlamberová., and Obsahuje bibliografii a bibliografické odkazy
Methamphetamine (MA) is an addictive psychostimulant with significant potential for abuse. Previous rat studies have demonstrated that MA use during pregnancy impairs maternal behavior and induced delayed development of affected pups. The
offspring of drug-addictive mothers were often neglected and exposed to neonatal stressors. The present study therefore examines the effect of perinatal stressors combined with exposure to prenatal MA on the development of pups and maternal behavior. Dams were divided into three groups according to drug treatment during pregnancy: controls (C); saline (SA, s.c., 1 ml/kg); MA (s.c., 5 mg/ml/kg). Litters were divided into four groups according to postnatal stressors: controls (N); maternal separation (S); maternal cold-water stress (W); maternal separation plus cold-water stress (SW). The pup-retrieval test showed differences among postnatally stressed mothers and non-stressed controls. The righting reflex on
a surface revealed delayed development of pups prenatally exposed to MA/SA and postnatal stress. Negative geotaxis and Rotarod results confirmed that the MA group was the most affected. Overall, our data suggests that a combination of perinatal stress and prenatal MA can have a detrimental effect on maternal behavior as well as on the sensorimotor development of pups. However, MA exposure during pregnancy seems to be the decisive factor for impairment.
It is known that psychostimulants including methamphetamine (MA) have neurotoxic effect, especially, if they are targeting CNS during its critical periods of development. The present study was aimed on evaluation of cognitive changes following scheduled prenatal MA exposure in combination with long-term exposure in adulthood of male rats. Two periods of gestation were targeted: 1st half - the embryonic day (ED) 1-11 and 2nd half - ED 12-22. Rat mothers received subcutaneously a daily injection of MA (5 mg/kg) or saline (SAL, 1 ml/kg) throughout scheduled periods. Male offspring were tested for cognitive changes in the Morris Water Maze (MWM) in adulthood. Each day of the experiment animals received an injection of MA (1 mg/kg) or SAL (1 ml/kg) during 12 days. Our results demonstrated that in the group of animals exposed to the drug during ED 1-11, neither prenatal MA exposure, nor adult MA treatment changed the performance in the MWM test. Only the velocity was increased in group with long-term MA treatment (SAL/MA and MA/MA). In the group of animals exposed to the drug during ED 12-22, rats exposed to MA prenatally and also in adulthood (MA/MA) swam faster but learned the position of the platform slower in the Place Navigation Test than animals exposed to SAL in adulthood (MA/SAL). In the Probe Test, MA/SAL had decreased velocity and swam shorter distance than MA/MA or SAL/SAL rats suggesting increased floating of these animals. In the Memory Retention Test, SAL/MA rats swam shorter distance than SAL/SAL or MA/MA animals suggesting changes in used strategies in memory recall. As conclusion, our results suggest differences in the effect of combination of prenatal and adult exposure to MA. These effects further depend on the stage of CNS development and schedule of MA exposure affecting intrauterine development in male rats., I. Hrebíčková, M. Malinová-Ševčíková, E. Macúchová, K. Nohejlová, R. Šlamberová., and Obsahuje bibliografii
The aim of the present study was to compare the response to acute application of several drugs in adult male and female rats prenatally exposed to metham phetamine (MA). Spontaneous locomotor activity and exploratory behavior of adult male and female rats prenatally exposed to MA (5 mg/kg) or saline were tested in a Laboras apparatus (Metris B.V., Netherlands) for 1 h. Challenge dose of the examined drug [amphetamine - 5 mg/kg; cocaine - 5mg/kg; MDMA (3,4-methylenedioxymethamphetamine) - 5 mg/kg; morphine - 5 mg/kg; THC (delta9-tetrahydrocannabinol) - 2 mg/kg] or saline was injected prior to testing. Our data demonstrate that prenatal MA exposure did not affect behavior in male rats with cocaine or morphine treatment, but increased locomotion and exploration in females. Application of amphetamine and MDMA in adulthood increased activity in both sexes, while cocaine and THC only in female rats. Morphine, on the other hand, decreased the activity in the Laboras test in both sexes. As far as sex and estrous cycle is concerned, the present study shows that males were generally less active than females and also females in proestrus-estrus phase of the estrous cycle were more active than females in diestrus. In conclusion, the present study shows that the pr enatal MA exposure does not induce general sensitization but affects the sensitivity to drugs dependently to mechanism of drug action and with respect to gonadal hormones., R. Šlamberová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded
for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg
displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their
ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.
Since close relationship was shown between drug addiction and memory formation, the aim of the present study was to investigate the effects of interaction between prenatal methamphetamine (MA) exposure and MA treatment in adulthood on spatial and non-spatial memory and on the structure of the N-methyl-D-aspartate (NMDA) receptors in the hippocampus. Adult male rats prenatally exposed to MA (5 mg/kg) or saline were tested in adulthood. Non-spatial memory was examined in the Object Recognition Test (ORT) and spatial memory in the Object Location Test (OLT) and in the Memory Retention Test (MRT) conducted in the Morris Water Maze (MWM), respectively. Based on the type of the memory test animals were injected either acutely (ORT, OLT) or long-term (MWM) with MA (1 mg/kg). After each testing, animals were sacrificed and brains were removed. The hippocampus was then examined in Western Blot analysis for occurrence of different NMDA receptors’ subtypes. Our results demonstrated that prenatal MA exposure affects the development of the NMDA receptors in the hippocampus that might correspond with improvement of spatial memory tested in adulthood in the MWM. On the other hand, the effect of prenatal MA exposure on nonspatial memory examined in the ORT was the opposite. In addition, we showed that the effect of MA administration in adulthood on NMDA receptors is influenced by prenatal MA exposure, which seems to correlate with the spatial memory examined in the OLT., R. Šlamberová, M. Vrajová, B. Schutová, M. Mertlová, E. Macúchová, K. Nohejlová, L. Hrubá, J. Puskarčíková, V. bubeníková-Valešová, A. Yamamotová., and Obsahuje bibliografii