This tool is the first morphological analyzer ever for this language.
The analyzer is a FST that produces all possible segmentations and tagging sequences in a word-by-word fashion.
The original SDP 2014 and 2015 data collections were made available under task-specific ‘evaluation’ licenses to registered SemEval participants. In mid-2016, all original data has been bundled with system submissions, supporting software, an additional SDP-style collection of semantic dependency graphs, and additional background material (from which some of the SDP target representations were derived) for release through the Linguistic Data Consortium (with LDC catalogue number LDC2016 T10).
One of the four English target representations (viz. DM) and the entire Czech data (in the PSD target representation) are not derivative of LDC-licensed annotations and, thus, can be made available for direct download (Open SDP; version 1.1; April 2016) under a more permissive licensing scheme, viz. the Creative Common Attribution-NonCommercial-ShareAlike license. This package also includes some ‘richer’ meaning representations from which the English bi-lexical DM graphs derive, viz. scope-underspecified logical forms and more abstract, non-lexicalized ‘semantic networks’. The latter of these are formally (if not linguistically) similar to Abstract Meaning Representation (AMR) and are available in a range of serializations, including in AMR-like syntax.
Please use the following bibliographic reference for the SDP 2016 data:
@string{C:LREC = {{I}nternational {C}onference on
{L}anguage {R}esources and {E}valuation}}
@string{LREC:16 = {Proceedings of the 10th } # C:LREC}
@string{L:LREC:16 = {Portoro\v{z}, Slovenia}}
@inproceedings{Oep:Kuh:Miy:16,
author = {Oepen, Stephan and Kuhlmann, Marco and Miyao, Yusuke
and Zeman, Daniel and Cinkov{\'a}, Silvie
and Flickinger, Dan and Haji\v{c}, Jan
and Ivanova, Angelina and Ure\v{s}ov{\'a}, Zde\v{n}ka},
title = {Towards Comparability of Linguistic Graph Banks for Semantic Parsing},
booktitle = LREC:16
year = 2016,
address = L:LREC:16,
pages = {3991--3995}
}
The original SDP 2014 and 2015 data collections were made available under task-specific ‘evaluation’ licenses to registered SemEval participants. In mid-2016, all original data has been bundled with system submissions, supporting software, an additional SDP-style collection of semantic dependency graphs, and additional background material (from which some of the SDP target representations were derived) for release through the Linguistic Data Consortium (with LDC catalogue number LDC2016 T10).
One of the four English target representations (viz. DM) and the entire Czech data (in the PSD target representation) are not derivative of LDC-licensed annotations and, thus, can be made available for direct download (Open SDP; version 1.2; January 2017) under a more permissive licensing scheme, viz. the Creative Common Attribution-NonCommercial-ShareAlike license. This package also includes some ‘richer’ meaning representations from which the English bi-lexical DM graphs derive, viz. scope-underspecified logical forms and more abstract, non-lexicalized ‘semantic networks’. The latter of these are formally (if not linguistically) similar to Abstract Meaning Representation (AMR) and are available in a range of serializations, including in AMR-like syntax.
Version 1.1 was released April 2016. Version 1.2 adds the 2015 Turku system, which was accidentally left out from version 1.1.
Please use the following bibliographic reference for the SDP 2016 data:
@string{C:LREC = {{I}nternational {C}onference on
{L}anguage {R}esources and {E}valuation}}
@string{LREC:16 = {Proceedings of the 10th } # C:LREC}
@string{L:LREC:16 = {Portoro\v{z}, Slovenia}}
@inproceedings{Oep:Kuh:Miy:16,
author = {Oepen, Stephan and Kuhlmann, Marco and Miyao, Yusuke
and Zeman, Daniel and Cinkov{\'a}, Silvie
and Flickinger, Dan and Haji\v{c}, Jan
and Ivanova, Angelina and Ure\v{s}ov{\'a}, Zde\v{n}ka},
title = {Towards Comparability of Linguistic Graph Banks for Semantic Parsing},
booktitle = LREC:16
year = 2016,
address = L:LREC:16,
pages = {3991--3995}
}
The Prague Dependency Treebank 3.5 is the 2018 edition of the core Prague Dependency Treebank (PDT). It contains all PDT annotation made at the Institute of Formal and Applied Linguistics under various projects between 1996 and 2018 on the original texts, i.e., all annotation from PDT 1.0, PDT 2.0, PDT 2.5, PDT 3.0, PDiT 1.0 and PDiT 2.0, plus corrections, new structure of basic documentation and new list of authors covering all previous editions. The Prague Dependency Treebank 3.5 (PDT 3.5) contains the same texts as the previous versions since 2.0; there are 49,431 annotated sentences (832,823 words) on all layers, from tectogrammatical annotation to syntax to morphology. There are additional annotated sentences for syntax and morphology; the totals for the lower layers of annotation are: 87,913 sentences with 1,502,976 words at the analytical layer (surface dependency syntax) and 115,844 sentences with 1,956,693 words at the morphological layer of annotation (these totals include the annotation with the higher layers annotated as well). Closely linked to the tectogrammatical layer is the annotation of sentence information structure, multiword expressions, coreference, bridging relations and discourse relations.
Trained models for UDPipe used to produce our final submission to the Vardial 2017 CLP shared task (https://bitbucket.org/hy-crossNLP/vardial2017). The SK model was trained on CS data, the HR model on SL data, and the SV model on a concatenation of DA and NO data. The scripts and commands used to create the models are part of separate submission (http://hdl.handle.net/11234/1-1970).
The models were trained with UDPipe version 3e65d69 from 3rd Jan 2017, obtained from
https://github.com/ufal/udpipe -- their functionality with newer or older versions of UDPipe is not guaranteed.
We list here the Bash command sequences that can be used to reproduce our results submitted to VarDial 2017. The input files must be in CoNLLU format. The models only use the form, UPOS, and Universal Features fields (SK only uses the form). You must have UDPipe installed. The feats2FEAT.py script, which prunes the universal features, is bundled with this submission.
SK -- tag and parse with the model:
udpipe --tag --parse sk-translex.v2.norm.feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu
A slightly better after-deadline model (sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe), which we mention in the accompanying paper, is also included. It is applied in the same way (udpipe --tag --parse sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu).
HR -- prune the Features to keep only Case and parse with the model:
python3 feats2FEAT.py Case < hr-ud-predPoS-test.conllu | udpipe --parse hr-translex.v2.norm.Case.w2v.trainonpred.udpipe
NO -- put the UPOS annotation aside, tag Features with the model, merge with the left-aside UPOS annotation, and parse with the model (this hassle is because UDPipe cannot be told to keep UPOS and only change Features):
cut -f1-4 no-ud-predPoS-test.conllu > tmp
udpipe --tag no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe no-ud-predPoS-test.conllu | cut -f5- | paste tmp - | sed 's/^\t$//' | udpipe --parse no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe
Tools and scripts used to create the cross-lingual parsing models submitted to VarDial 2017 shared task (https://bitbucket.org/hy-crossNLP/vardial2017), as described in the linked paper. The trained UDPipe models themselves are published in a separate submission (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1971).
For each source (SS, e.g. sl) and target (TT, e.g. hr) language,
you need to add the following into this directory:
- treebanks (Universal Dependencies v1.4):
SS-ud-train.conllu
TT-ud-predPoS-dev.conllu
- parallel data (OpenSubtitles from Opus):
OpenSubtitles2016.SS-TT.SS
OpenSubtitles2016.SS-TT.TT
!!! If they are originally called ...TT-SS... instead of ...SS-TT...,
you need to symlink them (or move, or copy) !!!
- target tagging model
TT.tagger.udpipe
All of these can be obtained from https://bitbucket.org/hy-crossNLP/vardial2017
You also need to have:
- Bash
- Perl 5
- Python 3
- word2vec (https://code.google.com/archive/p/word2vec/); we used rev 41 from 15th Sep 2014
- udpipe (https://github.com/ufal/udpipe); we used commit 3e65d69 from 3rd Jan 2017
- Treex (https://github.com/ufal/treex); we used commit d27ee8a from 21st Dec 2016
The most basic setup is the sl-hr one (train_sl-hr.sh):
- normalization of deprels
- 1:1 word-alignment of parallel data with Monolingual Greedy Aligner
- simple word-by-word translation of source treebank
- pre-training of target word embeddings
- simplification of morpho feats (use only Case)
- and finally, training and evaluating the parser
Both da+sv-no (train_ds-no.sh) and cs-sk (train_cs-sk.sh) add some cross-tagging, which seems to be useful only in
specific cases (see paper for details).
Moreover, cs-sk also adds more morpho features, selecting those that
seem to be very often shared in parallel data.
The whole pipeline takes tens of hours to run, and uses several GB of RAM, so make sure to use a powerful computer.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). This is the second release of UD Treebanks, Version 1.1.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).