Type I diabetes mellitus (DM1) is a complex disease with adverse effects on organs and tissues despite compensation by insulin treatment. The goal of our study was to study how kidney diseases change 31P MR parameters of muscle metabolism in DM1 patients with respect to gender. 51 DM1 patients (19 m/14 f without and 13 m/5 f with nephropathy) and 26 (14 m/12 f) healthy volunteers were examined using 31P magnetic resonance spectroscopy at 3T tomograph at rest, and during and after a calf muscle exercise. The exercise consisted of a six-minute plantar flexion using a pedal ergometer followed by a six-minute recovery. It is reflected by reduced relative β-ATP and increased Pi and phosphodiester signals to phosphocreatine (PCr) at rest and prolongation of the PCr recovery time after the exercise. Measurement on healthy volunteers indicated differences between males and females in pH at the rest and after the exercise only. These differences between patients groups were not significant. We have proven that nephropathy affects the metabolism in diabetic patients and our results confirm significant difference between patients with and without nephropathy. Gender differences in pH were observed only between male and female healthy volunteers., P. Sedivy, M. Dezortova, M. Drobny, Z. Vlasakova, V. Herynek, M. Hajek., and Obsahuje bibliografii
We introduce a new magnetic resonance (MR) method based on a pixel-by-pixel image processing to examine relationships between metabolic and structural processes in the pathologic hippocampus. The method was tested for lateralization of the epileptogenic zone in patients with temporal lobe epilepsy (TLE). Twenty patients with drug-resistant TLE and fifteen healthy controls were examined at 3T. The measurement protocol contained T2-weighted MR images, spectroscopic imaging, diffusion tensor imaging and T2 relaxometry. Correlations between quantitative MR parameters were calculated on a pixelby- pixel basis using the CORIMA program which enables automated pixel identification in the normal tissue according to control data. All MR parameters changed in the anteroposterior direction in the hippocampus and correlation patterns and their slopes differed between patients and controls. Combinations of T2 relaxation times with metabolite values represent the best biomarkers of the epileptogenic zone. Correlations with mean diffusivity did not provide sufficiently accurate results due to diffusion image distortions. Quantitative MR analysis noninvasively provides a detailed description of hippocampal pathology and may represent complementary tool to the standard clinical protocol. However, the automated processing should be carefully monitored in order to avoid possible errors caused by MR artifacts., D. Wagnerová, V. herynek, M. Dezortová, P. Marusič, P. Kršek, J. Zámečník, F. Jírů, A. Škoch, M. Hájek., and Obsahuje bibliografii