The creation of improved areas is one way of increasing the productivity of livestock on Cantabrian heathland (NW Spain), a habitat that is frequently located in less favourable mountainous areas where the development of sustainable husbandry is limited. The effect of this on the biodiversity of heathland is unclear and likely to depend on several factors, such as the grazing regime. In order to clarify this situation, the effects of type of vegetation, species of grazer and grazing regime on the composition of the ground-dwelling arthropod fauna of partially improved heathland were determined. The effects of grazing by cattle or sheep and two grazing regimes (cattle or sheep, or both of them together with goats) were studied in eight plots (two replicates per treatment). Each plot included two types of vegetation, gorse (Ulex gallii)-dominated shrubland and improved grassland (Lolium perenne-Trifolium repens). Arthropods were surveyed using pitfall traps. Overall, the composition of the arthropod fauna did not differ between plots grazed by different species of grazer or using different grazing regimes but was significantly associated with the type of vegetation. Most of the opilionids and several carabids clearly preferred shrubland, while lycosids and various carabids were mainly associated with grassland. While the species of grazer affected the faunal composition of grassland, grazing regime was more important in shrubland. Arthropod responses to the grazing treatments were determined by the grazing behaviour of the large herbivores and the habitat requirements of each arthropod taxon. The great structural heterogeneity of the vegetation and the more microhabitats in shrubland grazed by mixed flocks was mainly a result of the goats preferring to browse on the woody vegetation in these areas. The grazing by either sheep or cattle had less of an affect on the fauna of shrubland than grassland. and Rocío ROSA GARCÍA, Urcesino GARCÍA, Koldo OSORO, Rafael CELAYA.
Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, FP >10 µmol m-2 s-1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on FP to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. -1.75 and -0.60 µmol m-2 s-1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m-2 s-1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 µmol m-2 s-1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing-rather than amount-of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than FP, the model applied here failed to describe daytime carbon exchange only as a function of FP and could not be used over most of the year to fill gaps in the data. and P. Serrano-Ortiz ... [et al.].