The aim of this study was to determine whether excessive oxygen uptake (V.o2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak V.o2, respectively. V.o2 kinetics above zero watts was obtained by subtracting V.o2 at zero watts of previous exercise (ΔV.o2). ΔV.o2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the ΔV.o2 applicable to heavy exercise. The difference between ΔV.o2 in heavy exercise and ΔV.o2 estimated from the value of moderate exercise was obtained. The obtained V.o2 was defined as excessive V.o2. The time constant of excessive V.o2 during exercise (1.88±0.70 min) was significantly shorter than that during recovery (9.61±6.92 min). Thus, there was excessive V.o2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery., T. Zano, T. Yunoki, R. Matsuura, T. Arimitsu, T. Kimura., and Obsahuje bibliografii a bibliografické odkazy
Study of the relationship between ventilation parameters: monitored expiratory time constant – τedyn and breathing – trigger frequency (ftrig) and time of breathing cycle (Tcy) are main goals of this article. Parameters were analyzed during last 4±2 h before weaning from ventilation in 66 patients ventilated in pressure support mode (PSV). We have found out, that there exist mathematical relationships, observed during adequate gas exchange, yet not described. Monitored parameters are represented by τedyn, ftrig and Tcy. The analysis showed close negative correlation between Tcy and ftrig (R2 =0.903). This implies that each increasing of τedyn causes decreasing of ftrig and vice versa. The calculation of regression equation between τedyn and Tcy outlined that Tcy = 5.2625 * τedyn + 0.1242 (R2 =0.85). Regulation of respiratory cycles by the respiratory center in the brain is probably based on evaluation of τedyn as the τedyn probably represents a regulatory element and Tcy regulated element. It can be assumed, that respiratory center can optimize the work of breathing in order to minimize energy in system patient + ventilator. The unique relationship, described above could be useful in clinical practice for development of new ventilation modes.