ECM is composed of different collagenous and non-collagenous proteins. Collagen nanofibers play a dominant role in maintaining the biological and structural integrity of various tissues and organs, including bone, skin, tendon, blood vessels, and cartilage. Artificial collagen nanofibers are increasingly significant in numerous tissue engineering applications and seem to be ideal scaffolds for cell growth and proliferation. The modern tissue engineering task is to develop three-dimensional scaffolds of appropriate biological and biomechanical properties, at the same time mimicking the natural extracellular matrix and promoting tissue regeneration. Furthermore, it should be biodegradable, bioresorbable and non-inflammatory, should provide sufficient nutrient supply and have appropriate viscoelasticity and strength. Attributed to collagen features mentioned above, collagen fibers represent an obvious appropriate material for tissue engineering scaffolds. The aim of this minireview is, besides encapsulation of the basic biochemical and biophysical properties of collagen, to summarize the most promising modern methods and technologies for production of collagen nanofibers and scaffolds for artificial tissue development., L. Koláčná, J. Bakešová, F. Varga, E. Košťáková, L. Plánka, A. Nečas, D. Lukáš, E. Amler, V. Pelouch., and Obsahuje bibliografii
The present article introduces a novel method of characterizing the macromechanical cartilage properties based on dynamic testing. The proposed approach of instrumented impact testing shows the possibility of more detailed investigation of the acting dynamic forces and corresponding deformations within the wide range of strain rates and loads, including the unloading part of stress-strain curves and hysteresis loops. The presented results of the unconfined compression testing of both the native joint cartilage tissues and potential substitute materials outlined the opportunity to measure the dissipation energy and thus to identify the initial mechanical deterioration symptoms and to introduce a better definition of material damage. Based on the analysis of measured specimen deformation, the intact and pathologically changed cartilage tissue can be distinguished and the differences revealed., F. Varga, M. Držík, M. Handl, J. Chlpík, P. Kos, E. Filová, M. Rampichová, A. Nečas, T. Trč, E. Amler., and Obsahuje bibliografii
a1_Mechanical properties of scaffolds seeded with mesenchymal stem cells used for cartilage repair seem to be one of the critical factors in possible joint resurfacing. In this paper, the effect of adding hyaluronic acid, hydroxyapatite nanoparticles or chitosan nanofibers into the cross-linked collagen I on the mechanical response of the lyophilized porous scaffold has been investigated in the dry state at 37 oC under tensile loading. Statistical significance of the results was evaluated using ANOVA analysis. The results showed that the addition of hyaluronic acid significantly (p<<0.05) reduced the tensile elastic modulus and enhanced the strength and deformation to failure of the modified cross-linked collagen I under the used test conditions. On the other hand, addition of hydroxyapatite nanoparticles and chitosan nanofibers, respectively, increased the elastic modulus of the modified collagen ten-fold and four-fold, respectively. Hydroxyapatite caused significant reduction in the ultimate deformation at break while chitosan nanofibers enhanced the ultimate deformation under tensile loading substantially (p<<0.05). The ultimate tensile deformation was significantly (p<<0.05) increased by addition of the chitosan nanofibers. The enhanced elastic modulus of the scaffold was translated into enhanced resistance of the porous scaffolds against mechanical load compared to scaffolds based on cross-linked neat collagen or collagen with hyaluronic acid with similar porosity. It can be concluded that enhancing the rigidity of the compact scaffold material by adding rigid chitosan nanofibers can improve the resistance of the porous scaffolds against compressive loading, which can provide more structural protection to the seeded mesenchymal stem cells when the construct is implanted into a lesion., a2_Moreover, scaffolds with chitosan nanofibers seemed to enhance cell growth compared to the neat collagen I when tested in vitro as well as the scaffold stability, extending its resorption to more than 10 weeks., J. Jančář, A. Slovíková, E. Amler, P. Krupa, H. Kecová, L. Plánka, P. Gál, A. Nečas., and Obsahuje bibliografii
The aim of this study was to evaluate macroscopically, histologically and immunohistochemically the quality of newly formed tissue in iatrogenic defects of articular cartilage of the femur condyle in miniature pigs treated with the clinically used method of microfractures in comparison with the transplantation of a combination of a composite scaffold with allogeneic mesenchymal stem cells (MSCs) or the composite scaffold alone. The newly formed cartilaginous tissue filling the defects of articular cartilage after transplantation of the scaffold with MSCs (Group A) had in 60 % of cases a macroscopically smooth surface. In all lesions after the transplantation of the scaffold alone (Group B) or after the method of microfractures (Group C), erosions/fissures or osteophytes were found on the surface. The results of histological and immunohistochemical examination using the modified scoring system according to O’Driscoll were as follows: 14.7±3.82 points after transplantations of the scaffold with MSCs (Group A); 5.3±2.88 points after transplantations of the scaffold alone (Group B); and 5.2±0.64 points after treatment with microfractures (Group C). The O’Driscoll score in animals of Group A was significantly higher than in animals of Group B or Group C (p<0.0005 both). No significant difference was found in the O’Driscoll score between Groups B and C. The treatment of iatrogenic lesions of the articular cartilage surface on the condyles of femur in miniature pigs using transplantation of MSCs in the composite scaffold led to the filling of defects by a tissue of the appearance of hyaline cartilage. Lesions treated by implantation of the scaffold alone or by the method of microfractures were filled with fibrous cartilage with worse macroscopic, histological and immunohistochemial indicators., A. Nečas ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Computed tomography (CT) is an effective diagnostic modality for three-dimensional imaging of bone structures, including the geometry of their defects. The aim of the study was to create and optimize 3D geometrical and real plastic models of the distal femoral component of the knee with joint surface defects. Input data included CT images of stifle joints in twenty miniature pigs with iatrogenic osteochondrosis-like lesions in medial femoral condyle of the left knee. The animals were examined eight and sixteen weeks after surgery. Philips MX 8000 MX and View workstation were used for scanning parallel plane cross section slices and Cartesian discrete volume creation. On the average, 100 slices were performed in each stifle joint. Slice matrices size was 512 x 512 with slice thickness of 1 mm. Pixel (voxel) size in the slice plane was 0.5 mm (with average accuracy of ± 0.5 mm and typical volume size 512 × 512 × 100 voxels). Three-dimensional processing of CT data and 3D geometrical modelling, using interactive computer graphic system MediTools formerly developed here, consisted of tissue segmentation (raster based method combination and 5 % of manual correction), vectorization by the marching-cubes method, smoothing and decimation. Stifle- joint CT images of three individuals of different body size (small, medium and large) were selected to make the real plastic models of their distal femurs from plaster composite using rapid prototyping technology of Zcorporation. Accuracy of the modeling was ± 0.5 mm. The real plastic models of distal femurs can be used as a template for developing custom made press and fit scaffold implants seeded with mesenchymal stem cells that might be subsequently implanted into iatrogenic joint surface defects for articular cartilage-repair enhancement., P. Krupa, P. Kršek, M. Javorník, O. Dostál, R. Srnec, D. Usvald, P. Proks, H. Kecová, E. Amler, J. Jančář, P. Gál, L. Plánka, A. Nečas., and Obsahuje bibliografii
This study appears from an experiment previously carried out in New Zealand white rabbits. Allogenic mesenchymal stem cells (MSCs) were transplanted into an iatrogenically-created defect in the lateral section of the distal physis of the left femur in 10 miniature pigs. The right femur with the same defect served as a control. To transfer MSCs, a freshly prepared porous scaffold was used, based on collagen and chitosan, constituting a compact tube into which MSCs were implanted. The pigs were euthanized four months after the transplantation. On average, the left femur with transplanted MSCs grew more in length (0.56±0.14 cm) compared with right femurs with physeal defect without transplanted MSCs (0.14 ± 0.3 cm). The average angular (valgus) deformity of the left femur had an angle point of 0.78°, following measurement and X-ray examination, whereas in the right femur without transplantation it was 3.7°. The initial results indicate that preventive transplantation of MSCs into a physeal defect may prevent valgus deformity formation and probably also reduce disorders of the longitudinal bone growth. This part of our experiment is significant in the effort to advance MSCs application in human medicine by using pig as a model, which is the next step after experimenting on rabbits., L. Plánka ... [et al.]., and Obsahuje seznam literatury