Nedávno byly publikovány první výsledky dosažené pomoci metody využívající pro účely zobrazovací hmotové spektrometrie ablaci zkoumaného materiálu submikronovým svazkem extrémního ultrafialového (XUV) laseru s kapilárním výbojem., Recently, significant advantages have been demonstrated using a compact capillary discharge extreme ultraviolet (XUV) with a wavelength of 46.9 nm for mass spectrometry applications. 26.4 eV energy photons provide efficient single photon ionisation while preserving the structure of molecules and clusters. A radiation absorption depth of tens of nanometres coupled with focusing of the laser beam to -100 nm results in the ablation of atto-litre scale craters, which in turn enables high resolution mass spectral imaging of solid samples. First results obtained with this new mass spectrometry imaging method, developed and implemented at he NSF Engineering Research Center for Extreme Ultraviolet Science and Technology in Fort Collins (CO, USA), are summarised in this brief review., Tomáš Burian, Ilya Kuznetsov, Libor Juha, Jorge J. Rocca, Carmen S. Menoni., and Obsahuje seznam literatury
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].