Water is one of the most important components of the environment, having a direct effect on the maintenance of life on the Earth. In this paper, analysis of groundwater level variations, water balance and all the parameters included in these quantities, i.e. precipitation, evapotranspiration, surface run-off and subsurface run-off, were performed in the area of the Sudety Mountains for the period of November 2002 - October 2015. The groundwater level variations were computed on the basis of the mean Terrestrial Water Storage (TWS) values determined from Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLD AS). TWS data have been determined with a spatial resolution of one degree and temporal resolution of one month. According to the results, groundwater level variation can be approximately determined by water balance changes (with reverse sign). Specifically, for the Sudety area a high average stability of total water storage over the period of past 13 years and decline in groundwater level by about 13 cm (approximately 1 cm/year) was detected., Zofia Rzepecka, Monika Birylo, Joanna Kuczynska-Siehien, Jolanta Nastula and Katarzyna Pajak., and Obsahuje bibliografické odkazy
The development of knowledge on geodynamic processes is one of the most important issues in the Earth’s science. Over decades, geodetic techniques have been applied to study the geodynamics. The Global Navigation Satellite Systems (GNSS) have been reliably used for monitoring geodynamic processes. The satellite gravimetric missions such as GRACE (Gravity Recovery And Climate Experiment) and GRACE Follow-On (GRACE-FO) missions have provided numerous valuable information concerning temporal mass variations within the Earth system which can subsequently be converted to surface deformations of the Earth. The main aim of this study is to compare vertical deformations of the Earth's surface over the area of SouthEastern Poland obtained from GNSS data with the corresponding ones determined from GRACE data. The GNSS data for the period between 2008 and 2013 from 25 permanent GNSS stations operating in South-Eastern Poland and the latest release of GRACE-based Global Geopotential Models (GGMs) were used. GNSS data and GRACE-based GGMs were processed with the GAMIT/GLOBK and the IGiK‒TVGMF (Institute of Geodesy and Cartography - Temporal Variations of Gravity/Mass Functionals) packages, respectively. The results obtained indicate that monthly vertical deformations of the Earth’s surface determined using GNSS data are generally in a good agreement with the corresponding ones obtained from GRACE satellite mission data. Coefficients of correlation between these vertical deformations range from 0.60 to 0.90 and standard deviations of their differences are in the range of 2.6 - 5.7 mm., Walyeldeen Godah, Malgorzata Szelachowska, Jagat Dwipendra Ray and Jan Krynski., and Obsahuje bibliografii
The surface displacement caused by hydrological loading makes an important contribution to the non-linear crustal movement observed at the International Global Navigation Satellite System Service (IGS) stations. In this paper, the amplitude, correlation, and root mean square (RMS) of the vertical displacement time series signals of 47 IGS stations are used to analyze which data of Gravity Recovery and Climate Experiment (GRACE) or Global Land Data Assimilation System (GLDAS) can better reflect the hydrological load effect in Europe. The results show that in Europe, the hydrological load effect calculated based on GRACE data is more accurate than that of GLDAS, which has not been reported before. Then, the relationship between the GPS height and GRACE load deformation in terms of annually-oscillating signals, correlation, and phase is analyzed by using singular spectrum analysis, the Pearson correlation coefficient, and wavelet coherence (WTC). It was found that GPS and GRACE agree at some stations (e.g., BOR1 and ZIMM), while they differ significantly in amplitude and phase at other stations (e.g., KIRU and NOT1), indicating that not all GRACE-derived displacements of IGS stations can clearly explain their nonlinear motion. and The correlation coefficients between GPS and GRACE are higher than 0.7 at 85 % of stations. Amongst them, the values are obviously greater than 0.8 (e.g., ZIMM and LAMA) around inland areas and high mountains, and even less than 0.6 (e.g., ANKR and KIRU) along the coast of the Mediterranean ocean, which more precisely shows that the hydrological load effect has obvious spatial and regional characteristics compared with previous studies. In addition, the relative phase of the WTC solution is basically consistent under non-detrend and detrend, which shows that the relative phase difference of each station is only related to the nonlinear movement and not to the linear trend caused by the tectonic deformation. Finally, we study the influence of GRACE hydrological load on the RMS of GPS height, which is reduced by 24.60 % on average, and the reduction rate distribution of the RMS is in good agreement with the spatial distribution of the correlation coefficient.
Considering the advantage of Empirical Mode Decomposition (EMD) for extracting the geophysical signals and filtering out the noise, this paper will first apply the EMD approach to post-process the Gravity Recovery and Climate Experiment (GRACE) monthly gravity field models. A 14-year time-series of Release 06 (RL06) monthly gravity field models from the Center for Space Research (CSR) truncated to degree and order 60 from the period April 2002 to August 2016 are analyzed using the EMD approach compared with traditional Gaussian smoothing filtering. Almost all fitting errors of GRACE spherical harmonic coefficients by the EMD approach are smaller than those by Gaussian smoothing, indicating that EMD can retain more information of the original spherical harmonic coefficients. The ratios of latitude-weighted RMS over the land and ocean signals are adopted to evaluate the efficiency of eliminating noise. The results show that almost all ratios of RMS for the EMD approach are higher than those of Gaussian smoothing, with the mean ratio of RMS of 3.61 for EMD and 3.41 for Gaussian smoothing, respectively. Therefore, we can conclude that the EMD method can filter noise more effectively than Gaussian smoothing, especially for the high-degree coefficients, and retain more geophysical signals with less leakage effects.
The GRACE satellites have provided gravity field solutions with approximately monthly resolution since April 2002. The monthly solutions enable investigations of the annual, semi-annual and secular mass variations, which mainly occur in a thin layer of the Earth’s surface. By the end of the GRACE science mission in 2017, the time span has increased to 15 years, making the possibility of determining longer-period variations feasible. First attempts to determine multi-annual variations, i.e. periods of some years but less than 10, are presented in this study. A combination of 3 different PSD estimation methods has been used for identifying the regions of multi-annual mass variations. As a result, 8 different areas have been found with significant multi-annual mass variations. The source of multi-annual mass variations in most detected regions can be identified as related to the ENSO cycle. and Kiss Annamária, Földváry Lóránt.