Saline soils spread wildly in the world, therefore it is important to develop salt-tolerant crops. We carried out a pot study in order to determine effects of arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis and Glomus versiforme) in black locust seedlings under salt (NaCl) stress. The results showed that AMF enhanced in seedlings their growth, photosynthetic ability, carbon content, and calorific value. Under salt stress, the biomass of the seedlings with R. irregularis or G. versiforme were greater by 151 and 100%, respectively, while a leaf area increased by 197 and 151%, respectively. The seedlings colonized by R. irregularis exhibited a higher chlorophyll content, net photosynthetic rate, intercellular CO₂ concentration, stomatal conductance, and transpiration rate than that of the nonmycorrhizal seedlings or those colonized by G. versiforme. Both R. irregularis and G. versiforme significantly enhanced a carbon content, calorific value, carbon, and energy accumulations of black locust under conditions of 0 or 1.5 g(NaCl) kg-1(growth substrate). Our results suggested that AMF alleviated salt stress and improved the growth of black locust., X. Q. Zhu, M. Tang, H. Q. Zhang., and Obsahuje bibliografii
Arbuscular mycorrhizal fungi (AMF) form symbioses with many plants. Black locust (Robinia pseudoacacia L.) is an important energy tree species that can associate with AMF. We investigated the effects of AMF (Rhizophagus irregularis and Glomus versiforme) on the growth, gas exchange, chlorophyll (Chl) fluorescence, carbon content, and calorific value of black locust seedlings in the greenhouse. The total biomass of the arbuscular mycorrhizal (AM) seedlings was 4 times greater than that of the nonmycorrhizal (NM) seedlings. AMF greatly promoted the photosynthesis of black locust seedlings. AM seedlings had a significantly greater leaf area, higher carboxylation efficiency, Chl content, and net photosynthetic rate (PN) than NM seedlings. AMF also significantly increased the effective photochemical efficiency of PSII and significantly enhanced the carbon content and calorific value of black locust seedlings. Seedlings inoculated with G. versiforme had the largest leaf area and highest biomass, Chl content, PN, and calorific value., X. Q. Zhu, C. Y. Wang, H. Chen, M. Tang., and Obsahuje bibliografii
Poplars (Populus spp.) are widely used in the pulp and paper industry and as bioenergy resources. Poplars require a large amount of water for biomass accumulation and lack of water is a limiting factor for poplar growth. Arbuscular mycorrhizal (AM) fungi have been previously reported to afford some plant species with greater resistance to drought stress. However, the effects of AM fungi on hybrid poplar under drought stress and recovery have not been studied. The main aim of this study was to evaluate the effects of the AM fungus, Rhizophagus irregularis, on the growth, water status, chlorophyll (Chl) content and fluorescence, and photosynthesis of poplar seedlings. The experiment was divided into three stages. At each stage of the experiment, the seedlings were subjected to a different watering regime: well-watered (prior stress), drought, and then rewatering (recovery). Measurements were taken at the end of each stage of the experiment. The results showed that mycorrhizal plants had a higher net photosynthetic rate and Chl fluorescence compared with nonmycorrhizal plants, regardless of the stage. Mycorrhizal and nonmycorrhizal plants showed different responses to drought stress: mycorrhizal plants showed better water-use efficiency and water uptake under drought stress conditions. In general, the poplar seedlings that formed the AM symbiosis with R. irregularis showed enhanced growth and reduced loss of biomass during the drought stress compared with the nonmycorrhizal seedlings., T. Liu, M. Sheng, C. Y. Wang, H. Chen, Z. Li, M. Tang., and Obsahuje bibliografii