Saline soils spread wildly in the world, therefore it is important to develop salt-tolerant crops. We carried out a pot study in order to determine effects of arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis and Glomus versiforme) in black locust seedlings under salt (NaCl) stress. The results showed that AMF enhanced in seedlings their growth, photosynthetic ability, carbon content, and calorific value. Under salt stress, the biomass of the seedlings with R. irregularis or G. versiforme were greater by 151 and 100%, respectively, while a leaf area increased by 197 and 151%, respectively. The seedlings colonized by R. irregularis exhibited a higher chlorophyll content, net photosynthetic rate, intercellular CO₂ concentration, stomatal conductance, and transpiration rate than that of the nonmycorrhizal seedlings or those colonized by G. versiforme. Both R. irregularis and G. versiforme significantly enhanced a carbon content, calorific value, carbon, and energy accumulations of black locust under conditions of 0 or 1.5 g(NaCl) kg-1(growth substrate). Our results suggested that AMF alleviated salt stress and improved the growth of black locust., X. Q. Zhu, M. Tang, H. Q. Zhang., and Obsahuje bibliografii
Leaf mass per unit area (LMA), carbon and nitrogen contents, leaf construction cost, and photosynthetic capacity (Pmax) of Adiantum reniforme var. sinensis, an endangered fern endemic to the Three Gorges region in southwest China, were compared in five populations differing in habitat such as soil moisture and irradiance. The low soil moisture and high irradiance habitat population exhibited significantly higher LMA, area-based leaf construction (CCA), and carbon content (CA), but lower leaf nitrogen content per unit dry mass (NM) than the other habitat populations. The high soil moisture and low irradiance habitat populations had the lowest CCA, but their cost/benefic ratios of CCA/P max were similar to the medium soil moisture and irradiance habitat population due to their lower leaf Pmax. Hence A. reniforme var. sinensis prefers partially shaded, moist but well-drained, slope habitats. Due to human activities, however, its main habitats now are cliffs or steeply sloped bare rocks with poor and thin soil. The relatively high energy requirements and low photosynthetic capacity in these habitats could limit the capability of the species in extending population or interspecific competition and hence increase its endangerment. and J. X. Liao ... [et al.].