Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9-10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P N) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential P N, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P N to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields., M. A. El-Sharkawy., and Obsahuje seznam literatury
Physiological responses of two wheat (Triticum aestivum L.) genotypes (salt-tolerant DK961 and salt-sensitive JN17) to increased salt concentrations (50, 100, 150 mM NaCl: NaCl50, NaCl100, NaCl150) were studied. Photosynthetic capacity, irradiance response curves, contents of soluble sugars, proteins, and chlorophyll (Chl), K+/Na+ ratio, and activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in flag leaves were measured on 7 d after anthesis. In control (NaCl0) plants, non-significant (p>0.05) differences were found in gas exchange and saturation irradiance (SI) between salt-tolerant (ST) and salt-sensitive (SS) wheat genotypes. However, we found higher soluble sugar and protein contents, K+/Na+ ratio, and antioxidant enzyme activities, but lower Chl content and yield in ST wheat. Salinity stresses remarkably increased soluble sugar and protein contents and the antioxidant activities, but decreased K+/Na+ ratio, Chl contents, SI, photosynthetic capacities, and yield, the extent being considerably larger in JN17 than DK961. Although the soluble sugar and protein contents and the antioxidant activities of JN17 elevated more evidently under salt stresses, those variables never reached the high levels of DK961. The antioxidant enzyme activities of SS wheat increased in NaCl50 and NaCl100, but decreased rapidly when the NaCl concentration reached 150 mM. Thus the ST wheat could maintain higher grain yield than the SS one by remaining higher osmoregulation and antioxidative abilities, which led to higher photosynthetic capacity. Hence the ST wheat could harmonize the relationship between CO2 assimilation (source) and the grain yield (sink) under the experimental conditions. and Y. H. Zheng ... [et al.].
In the field, supplemental application of N fertilizer to rice (Oryza sativa) shortly before the beginning of heading stage increases leaf N content and enhances photosynthesis during the grain-filling period. In search of varietal differences in leaf gas exchange in response to supplemental N application, we examined 13 rice varieties grown in the field during two successive years. The varieties included japonica and indica varieties, both of which are widely grown in Japan. The response to supplemental N application could not be separated clearly between variety groups; some of the japonica varieties, but none of the indica varieties, exhibited significant increase in stomatal conductance (gs) after supplemental N application. Supplemental N was more effective to increase stomatal aperture in the varieties with inherently lower gs. Varieties that showed greater response of g s to supplemental N application might be able to adjust their stomatal aperture with appropriate N control. Although the internal-to-ambient CO2 mole fraction ratio and the leaf carbon isotopic composition (δ13C) differed among varieties as a result of variations in stomatal aperture and the CO2 requirement of mesophyll, supplemental N application barely influenced these parameters, because it only moderately affected stomatal aperture. Since δ13C tended to increase with increasing number of days from transplantation to heading stage in japonica varieties, δ13C values were more sensitive to differences in growth rate between years than to N application., S. Shimoda, A. Maruyama., and Obsahuje bibliografii
Dissolved organic carbon (DOC) transported by rivers represents an important link between carbon pools of terrestrial and oceanic ecosystems. However, it is unclear how frequent DOC must be sampled to obtain reasonable load estimates. Here, we used continuous records of the specific UV absorption coefficient (SAC) and discharge from a headwater stream at the Ore Mountains (Germany) to calculate load errors depending on DOC sampling frequency. SAC was used as a proxy for DOC. The results show that the load was underestimated by 13-19% with monthly, 10-13% with bi-weekly and 7-9% with weekly DOC samplings, respectively. We conclude that collecting additional data from high discharge events decrease the error significantly.