Blood pressure (BP) level results from the balance of vasoconstrictors (mainly sympathetic nervous system) and vasodilators (predominantly nitric oxide and endothelium-derived hyperpolarizing factor). Most of the forms of experimental hypertension are associated with sympathetic hyperactivity and endothelial dysfunction. It is evident that nitric oxide and norepinephrine are antagonists in the control of calcium influx through L-type voltage-dependent calcium channels (L-VDCC). Their effects on L-VDCC are mediated by cGMP and cAMP, respectively. Nevertheless, it remains to determine whether these cyclic nucleotides have direct effects on L-VDCC or they act through a modulation of calcium-activated K+ and Cl- channels which influence membrane potential. Rats with genetic or salt hypertension are characterized by a relative (but not absolute) NO deficiency compared to the absolute enhancement of sympathetic vasoconstriction. This dysbalance of vasoconstrictor and vasodilator systems in hypertensive animals is reflected by greater calcium influx through L-VDCC susceptible to the inhibition by nifedipine. However, when the modulatory influence of cyclic nucleotides is largely attenuated by simultaneous ganglionic blockade and NO synthase inhibition, BP of spontaneously hypertensive rats remains still elevated compared to normotensive rats due to augmented nifedipine-sensitive BP component. It remains to determine why calcium influx through L-VDCC of hypertensive rats is augmented even in the absence of modulatory influence of major vasoactive systems (sympathetic nervous system, nitric oxide)., M. Pintérová ... [et al.]., and Obsahuje seznam literatury
Maintenance of norepinephrine (NE)-induced contraction is dependent on Ca2+ influx through L-type voltage-dependent Ca2+ channels (VDCC), which is opposed by nitric oxide. Adrenergic receptors are coupled with different G proteins, including inhibitory G proteins (Gi) that can be inactivated by pertussis toxin (PTX). Our study was aimed to investigate the effects of endothelium removal, PTX pretreatment and acute VDCC blockade by nifedipine on the contractions of femoral arteries stimulated by norepinephrine. We used 12-week-old male WKY, half of the rats being injected with PTX (10 μg/kg i.v., 48 h before the experiment), which considerably reduced their blood pressure (BP). Contractions of isolated arteries were measured using Mulvany-Halpern myograph. NE dose-response curves determined in femoral arteries from PTX-treated WKY rats were shifted to the right compared to those from control WKY. On the contrary, removal of endothelium augmented NE dose-response curves shifting them to the left. Acute VDCC blockade by nifedipine (10-7 M) abolished all differences in NE dose-response curves which were dependent on the presence of either intact endothelium or functional Gi proteins because all NE dose-response curves were identical to the curve seen in vessels with intact endothelium from PTX-treated animals. We can conclude that BP reduction after PTX injection is accompanied by the attenuation of NE-induced contraction of femoral arteries irrespective of endothelium presence. Moreover, our data indicate that both vasodilator action of endothelium and Gi-dependent vasoconstrictor effect of norepinephrine operate via the control of Ca2+ influx through VDCC., S. Líšková, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
Diabetes mellitus is associated with many complications including retinopathy, nephropathy, neuropathy and angiopathy. Increased cardiovascular risk is accompanied with diabetes-induced endothelial dysfunction. Pharmacological agents with endothelium-protective effects may decrease cardiovascular complications. In present study sulodexide (glycosaminoglycans composed from heparin-like and dermatan fractions) was chosen to evaluate its protective properties on endothelial dysfunction in diabetes. Effect of sulodexide treatment (SLX, 100 UI/kg/day, i.p.) in 5 and 10 weeks lasting streptozotocin-induced diabetes (30 mg/kg/day, i.p. administered for three consecutive days) was investigated. Animals were divided into four groups: control (injected with saline solution), control-treated with sulodexide (SLX), diabetic (DM) and diabetic-treated with sulodexide (DM+SLX). The pre-prandial and postprandial plasma glucose levels, number of circulating endothelial cells (EC) and acetylcholine-induced relaxation of isolated aorta and mesenteric artery were evaluated. Streptozotocin elicited hyperglycemia irrespective of SLX treatment. Streptozotocin-induced diabetes enhanced the number of circulating endothelial cells compared to controls. SLX treatment decreased the number of EC in 10-week diabetes. Acetylcholine-induced relaxation of mesenteric arteries was significantly impaired in 5 and 10-week diabetes. SLX administration improved relaxation to acetylcholine in 5 and 10-week diabetes. Diabetes impaired acetylcholine-induced relaxation of rat aorta irrespective of SLX treatment. Our results demonstrate that SLX treatment lowers the number of circulating endothelial cells and improves endothelium-dependent relaxation in small arteries. These findings suggest endothelium-protective effect of sulodexide in streptozotocin-induced diabetes., V. Kristová, S. Líšková, R. Sotníková, R. Vojtko, A. Kurtanský., and Obsahuje bibliografii a bibliografické odkazy