Twelve randomly chosen Stipa tenacissima L. individuals were grouped into three tussock size classes, small (ST), medium (MT), and large (LT) with 5.6±0.8, 34.1±4.2, and 631.9±85.8 g of dry green foliar matter, respectively, in three plots with different S. tenacissima cover. Instantaneous (WUEi) and long-term (WUEl) water-use efficiencies were measured in two seasons of contrasting volumetric soil water content (early winter 21.0±0.8 % and summer 5.8±0.3 %). Maximum photochemical efficiency of photosystem 2 and stomatal conductance in summer assessed the extent of water and irradiance stress in tussocks of different size. WUEi was lower in MT and ST “water spender” strategies than in LT during the high water-availability season. In summer net photosynthetic rate and WUEi were higher and photoinhibition was lower in LT than in MT and ST. Significant spatial variability was found in WUEi. Water uptake was competitive in stands with denser alpha grass and more water availability in summer, reducing their WUEi. However, WUEl showed a rising tendency when water became scarce. Thus it is important to explicitly account for plant size in ecophysiological studies, which must be combined with demographic information when estimating functional processes at stand level in sequential scaling procedures. and D. A. Ramírez ... [et al.].
2-year-old seedlings of Metasequoia glyptostroboides were grown in open top chambers and exposed to four ozone concentrations [O3] (charcoal-filtered air, CF; 50, 100, and 200 mm3 m-3) for 25 d. Measurements of growth, leaf chlorophyll (Chl) content, and gas exchange parameters were made before and/or after O3 exposure. Leaf length, crown width, Chl a/b, net photosynthetic rate, stomatal conductance, and transpiration rate were significantly reduced at 100 and 200 mm3(O3) m-3. A remarkable decrease in stomatal conductance also occurred at 50 mm3(O3) m-3. and Z.-Z. Feng ... [et al.].
Soybean [Glycine max (L.) cv. Jack] grown in open top chambers under controlled laboratory and field conditions was ušed to study the acclimation of leaf gas exchange processes to CO2 enrichment. Air inside the open top chambers was maintained at either 700-800 or 350-400 pmol(C02) mol'^(air). Leaf gas exchange rates were measured for some plants switched between treatments. When measmed in the C02-emiched atmosphere, stomatal conductances (gg) were higher in leaves grown in C02-enriched atmospheres than in those grown under ambient conditions, and the lower gg values for plants in the C02-enriched atmospheres were limiting to leaf net photosynthetic CO2 exchange rates (Pn). of enriched leaves was higher than those of the ambient Controls when measured at elevated CO2 levels in both controlled environment and field studies, while it was depressed in enriched leaves when measured imder ambient CO2 conditions, and this drop in Pn did not recover until 6-15 d after plants were placed back in ambient conditions.
We studied the responses of gas exchange, leaf morphology, and growth to irradiance in Taihangia rupestris, a naturally rare herb inhabiting only vertical cliff faces. In low irradiance (LI, 10 % of full sun) T. rupestris had lower net photosynthetic rate (PN) and produced much less leaves, total leaf area, and biomass than in high (HI, full sun) or medium irradiance (MI, 50 % of full sun). PN of T. rupestris was higher in HI than in MI on August 8, but lower in HI than in MI on September 22. T. rupestris had shorter petioles and lower leaf area ratio, and produced more but smaller and thicker leaves in HI than in MI. In HI the fast production of new leaves may guarantee T. rupestris to maintain higher PN at the whole plant level and thus accumulate more biomass at harvest, although the single-leaf PN may become lower as found on September 22. Hence T. rupestris possesses a latent capacity to acclimate and adapt to full sun. Irradiance, therefore, may not be a responsible factor for the restricted distribution of T. rupestris on vertical cliffs. and Min Tang ... [et al.].
The effects of varying leaf temperature (T1) on some ecophysiological characteristics of photosynthesis for Quercus liaotungensis Koiz. under ambient radiation stress around midday on clear summer days were investigated using an IRGA equipped with a temperature-controlled cuvette. Net photosynthetic rate (PN) decreased as T1 increased from 30 to 35 °C as a result of stomatal closure, whereas non-stomatal limitation led to decreased PN in the T1 range of 35-45 °C. Decreased transpiration rate (E) and stomatal conductance (gs) at leaf temperatures above 30 °C were interpreted as a combined 'feedward' effect as a result of enhanced leaf-air vapour pressure deficit (VPD) and stomatal closure. Changes in E from T1 30 to 20 °C depended on VPD when gs was maintained constant. Water use efficiency (WUE) varied inversely with T1 by following a hyperbola. A decrease in intercellular CO2 concentration (Ci) occurred as a result of stomatal closure and a relatively high carboxylation capacity, whereas inactivation of mesophyll carboxylation in combination with photorespiration might be associated with the observed increase in Ci in the T1 range of 40 to 45 °C. and Shouren Zhang ... [et al.].
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant. and Y. K. Markovska, D. S. Dimitrov.
The optimum temperature for photosynthetic CO2 assimilation of A. mangium phyllodes was 30-32 °C. Photosystem 2 (PS 2) exhibited high tolerance to high temperature. Gas exchange and the function of PS2 of A. mangium were adapted to the temperature regime of the tropical environment and this might be the contributing factor to their fast growth under tropical conditions. and Hua Yu, Bee-Lian Ong.
Twelve-day-old barley seedlings were supplied with 23 μM methyl jasmonate (MeJA) or 10 μM paraquat (Pq) via the transpiration stream and kept in the dark for 24 h. Then they were exposed to 100 μmol m-2 s-1 PAR and samples were taken 1, 2, 3, and 6 h after irradiation. Treatment of seedlings with MeJA alone resulted in decreased content of chlorophyll (Chl), and net photosynthetic (PN) and transpiration rates. Pq treatment led to a decrease in Chl content and to a very strong inhibition of PN, the effects were manifested by 1 h of irradiation. Pq treatment did not affect the activity of ribulose-1,5 bisphosphate carboxylase (RuBPC, EC 4.1.1.39) but increased the activity of the photorespiratory enzymes phosphoglycolate phosphatase (PGP, EC 3.1.3.18), glycolate oxidase (GO, EC 1.1.3.1), and catalase (EC 1.11.1.6). Pre-treatment of seedlings with MeJA before exposure to Pq fully blocked the inhibitory effect of Pq on photosynthesis and protected against subsequent Pq-induced oxidative damage. and V. A. Hristova, L. P. Popova.
Net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) in an adult oil palm (Elaeis guineensis) canopy were highest in the 9th leaf and progressively declined with leaf age. Larger leaf area (LA) and leaf dry mass (LDM) were recorded in middle leaves. PN showed a significant positive correlation with gs and a negative relationship with leaf mass per area (ALM). The oil palm leaf remains photosynthetically active for a longer time in the canopy which contributes significantly to larger dry matter production in general and greater fresh fruit bunch yields in particular. and K. Suresh, C. Nagamani.
Haloxylon ammodendron, Calligonum mongolicum, Elaeagnus angustifolia, and Populus hosiensis had different adaptations to limited water availability, high temperature, and high irradiance. C. mongolicum used water more efficiently than did the other species. Because of low transpiration rate (E) and low water potential, H. ammodendron had low water loss suitable for desert conditions. Water use efficiency (WUE) was high in E. angustifolia, but high E and larger leaf area made this species more suitable for mesic habitats; consequently, this species is important in tree shelterbelts. P. hosiensis had low WUE, E, and photosynthesis rates, and therefore, does not prosper in arid areas without irrigation. High irradiances caused photoinhibition of the four plants. The decrease of photochemical efficiency was a possible non-stomata factor for the midday depression of C. mongolicum. However, the species exhibited different protective mechanisms against high irradiance under drought stress. H. ammodendron and C. mongolicum possessed a more effective antioxidant defence system than E. angustifolia. These three species showed different means of coping with oxidative stress. Hence an enzymatic balance is maintained in these plants under adverse stress conditions, and the concerted action of both enzymatic and non-enzymatic reactive oxygen species scavenging mechanisms is vital to survive adverse conditions. and J. R. Gong ... [et al.].