Soybean [Glycine mctx (L.) Merr. cv. Jack] was grown in the field in rain-prolected plots to study effects of drought and atmospheric CO2 enrichnient on leaf gas exchange. Midday depressions in leaf photosynthetic CO2 exchange rates were found in drought-sfressed plants and the diumal changes were inostly stoinatal- regulated, although accumulated drought stress eventually resulted in some non- stomatal limitations. However, seasonal changes in were mostly limited by non- stomatal factors. Water use efficiency was always higher for drought stiessed plants and depended on the severity of stress and associated stomatal or nonstoinatal limitations. At enriched atmospheric CO2 levels, stomatal limitations to Pyj under drought stress were less important than at ambient atmospheric CO2 levels. Morning and aftemoon leaf starch levels were enhanced in both irrigated and nonirrigated plants in enriched CO2. Aftemoon starch levels were higher in stiessed leaves than in non-stressed leaves at normál CO2 levels.
Soybean [Glycine max (L.) cv. Jack] grown in open top chambers under controlled laboratory and field conditions was ušed to study the acclimation of leaf gas exchange processes to CO2 enrichment. Air inside the open top chambers was maintained at either 700-800 or 350-400 pmol(C02) mol'^(air). Leaf gas exchange rates were measured for some plants switched between treatments. When measmed in the C02-emiched atmosphere, stomatal conductances (gg) were higher in leaves grown in C02-enriched atmospheres than in those grown under ambient conditions, and the lower gg values for plants in the C02-enriched atmospheres were limiting to leaf net photosynthetic CO2 exchange rates (Pn). of enriched leaves was higher than those of the ambient Controls when measured at elevated CO2 levels in both controlled environment and field studies, while it was depressed in enriched leaves when measured imder ambient CO2 conditions, and this drop in Pn did not recover until 6-15 d after plants were placed back in ambient conditions.