Chlorophyll fluorescence parameters of Quercus pubescens Willd. as response to heat shock (HS) by immersing leaves for 5 and 15 min in water of temperatures between 38 and 59 °C were examined. Fluorescence was measured after different periods of recovery (15, 30, 90, 210, and 1 440 min at 24/26 °C night/day temperature and 100 % humidity). The effective quantum yield of photosystem 2 (Y) in control and HS-treated leaves was always measured after previous 15 min irradiation. Under a 5 min HS, Y did not change after using temperatures below 44 °C, was rapidly restored after HS of moderate temperatures (44-48 °C), and progressively decreased and recovered eventually to the initial value after HS of high temperatures (48-52 °C). Y did not recover after HS with temperatures higher than 52 °C. Increase in the duration of HS from 5 to 15 min lead to change of the initial Y at each HS temperature, but the recovery processes were similar to those characteristic after 5 min incubation. The processes of recovery may depend mainly on the specificity of injuries caused by different heat shock temperatures. Thus Q. pubescens is able to preserve and recover the functional potential of its photosynthetic apparatus in response to HS up to 52 °C. and A. Dascaliuc, T. Ralea, P. Cuza.
Effect of pre-diapause temperature on summer and winter diapause intensity was examined under both laboratory and field conditions. Under short photoperiods of 8L : 16D and 10L : 14D, all pupae entered diapause at 15, 18 and 20°C and the incidence of diapause dropped to 82.3% and 85.5% at 22°C, respectively. Under long photoperiods of 14L : 10D and 16L : 8D, the incidence of diapause decreased with increasing temperature and there were significant differences among temperatures. The incidence of diapause at 16L : 8D was significantly lower than that under14L : 10D at 20 and 22°C. By transferring diapause pupae induced under various temperatures (18, 20 and 22°C) at a short day of 10L : 14D or a long day of 14L : 10D, to 12.5L : 11.5D, 20°C, the duration of summer diapause induced under 22°C (mean 76.1 days) was significantly shorter than those under 20°C (mean 85.9 days) and 18°C (mean 90.9 days), showing that the incidence of summer diapause was positively linked to the intensity of summer diapause; whereas the duration of winter diapause induced under 10L : 14D was similar at 18°C (89.2 days), 20°C (88.7 days) and 22°C (89.2 days) and there were no significant differences. Field experiments also showed that the high rearing temperatures significantly decreased the incidence and intensity of summer diapause, but had no significant affect on the intensity of winter diapause. When the naturally aestivating pupae from the first spring generation (formed on 24 April) and second spring generation (formed on 15 May) were kept under summer conditions, the diapause duration of the first generation lasted for 107-166 days (mean 146 days), about twenty days longer than that of the second generation [lasted for 92-151 days (mean 126 days)]. All results reveal that the sensitivity to temperature prior to aestivation and hibernation was quite different.
The vault in Vladislav Hall is a structural masterpiece of great historical value. Its structural analysis revealed that the permanent load exerted by its self weight is uniformly transmitted into the vaults and ribs without any potential crack appearance. The topical issue, however, is its response to temperature changes with respect to actual effects. Computations show that temperature changes may cause problems., Petr Fajman, Jiří Máca and Pavel Beran., and Obsahuje bibliografii
a1_We compared the interactive effects of temperature and light intensity on growth, photosynthetic performance, and antioxidant enzyme activity in Zizania latifolia Turcz. plants in this study. Plants were grown under field (average air temperature 9.6-25°C and average light intensity 177-375 W m-2) or greenhouse (20-32°C and 106-225 W m-2) conditions from the spring to the early summer. The results indicated that greenhouse-grown plants (GGP) had significantly higher plant height, leaf length, and leaf width, but lower leaf thickness and total shoot mass per cluster compared with field-grown plants (FGP). Tiller emergence was almost completely suppressed in GGP. Significantly higher chlorophyll (Chl) content and lower Chl a/b ratio were observed in GGP than in FGP. From 4 to 8 weeks after treatment (WAT), net photosynthetic rate (PN) was significantly lower in FGP than in GGP. However, from 9 to 12 WAT, PN was lower in GGP, accompanied by a decrease in stomatal conductance (gs) and electron transport rate (ETR) compared with FGP. Suppressed PN in GGP under high temperature combined with low light was also indicated by photosynthetic photon flux density (PPFD) response curve and its diurnal fluctuation 10 WAT. Meanwhile, ETR in GGP was also lower than in FGP according to the ETR - photosynthetically active radiation (PAR) curve. The results also revealed that GGP had a lower light saturation point (LSP) and a higher light compensation point (LCP). From 4 to 8 WAT, effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), and ETR were slightly lower in FGP than in GGP. The activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malondialdehyde (MDA) content were significantly higher from 4 to 8 WAT, but lower from 10 to 12 WAT in FGP., a2_However, catalase (CAT) activity was significantly lower in FGP from 4 to 8 WAT. Our results indicated that the growth and photosynthetic performance of Z. latifolia plants were substantially influenced by temperature, as well as light intensity. This is helpful to understand the physiological basis for a protected cultivation of this crop., N. Yan ... [et al.]., and Obsahuje bibliografii
Typical chestnut thylakoid extracts isolated by mechanical disruption of leaf tissues had an equivalent of 0.28 kg m-3 chlorophyll (Chl) which is six times less than in thylakoids obtained from spinach, although Chl content in leaves was only half as small. According to optical microscopy, the vesicles showed a good integrity, exhibiting at 21 °C a high capacity of photon-induced potential membrane generation, which was demonstrated by the almost full 9-amino-6-chloro-2-methoxyacridine fluorescence quenching in a hyper-saline medium containing 150 mM KCl and having osmotic potential of -1.5 MPa. The half-time of the thylakoid potential generation was 11.7 s with the time of dissipation around 8.9 s. In such conditions, spinach thylakoids showed an increased swelling and also differences in the half-time generation which was almost four times faster than was observed in chestnut. However, when spinach thylakoids were incubated in a typical hypo-saline medium without KCl with osmotic potential -0.8 MPa, no additional swelling was observed. Consequently the half-time of potential dissipation was 35 s. Studies with nigericin suggested a chestnut thylakoid ΔpH significantly smaller than that observed in spinach, which was confirmed by the measurements of the ATP driven pumping activity. and J. Gomes-Laranjo ... [et al.].
Geographic range expansion is one of the best documented macroecological consequences of climate change. A concomitant change in morphology has been demonstrated in some species. The relationship between latitudinal variation in morphology (e.g. Bergmann's rule) and the morphological consequences of microevolutionary pressures at expanding range margins have received little attention in the literature. Here we compare morphology of males of two Palaearctic damselfly (Odonata: Zygoptera) species, Coenagrion puella (Linnaeus, 1758) and Pyrrhosoma nymphula (Sulzer, 1776). C. puella has recently expanded its range from the north of England into Scotland. P. nymphula does not exhibit a range margin in the United Kingdom and has established populations in northern Scotland. We demonstrate evidence for spatially correlated variation in body size across the sampling sites between the two species but a deviation in patterns of dispersal-related morphology. P. nymphula exhibited very weak relationships between dispersal-related morphology (wing loading and thorax : abdomen mass ratio) and latitude. However, the more southerly-distributed C. puella exhibited strong relationships between mass investment in dispersal-related morphology and latitude. These trends appear to indicate compensatory growth patterns in cooler environments like those demonstrated for other species. The limits of this compensation for conditions that are close to the limits of a species' tolerance may contribute to the determination of the range margin. Greater variation in morphology towards the range margin has been observed in previous studies in Odonata. As such, the location of the sampling sites relative to the range margin of each species (closer in C. puella than P. nymphula) is highlighted as a potential contributing factor to the variation observed.
Ichthyophthirius multifiliis Fouquet, 1876, a ciliate parasite, is a cosmopolitan and problematic parasite of cultured freshwater fish. Each geographical isolate of I. multifiliis has variations in life cycle timing under different abiotic water conditions, such as temperature and salinity. We assessed the effects of salinity and temperature on the development and the preferred settlement site of a temperate Australian isolate of I. multifiliis. The time until theront release was significantly different between each temperature; development time was longest at 5 °C with a mean time of 189 h and decreased to a mean time of 11.7 h at 30 °C. At 5 °C our isolate produced a mean of 267 theronts per tomont, which increased to a mean of 493 theronts at 25 °C and reduced to a mean of 288 theronts at 30 °C. Theront length showed an inverse relationship to temperature; mean length was 62 μm at 5 °C and 41 μm at 30 °C. Our isolate reproduced faster at all temperatures and a greater sensitivity to salinity than all reported profiles for temperate isolates. Parasite abundance was highest on the dorsal region of the fish. An accurate understanding of temperature-life cycle information and optimal region to sample for surveillance will aid in the development of specific management plans for the Australian isolate of I. multifiliis, facilitating the strategic timing of treatments., James M. Forwood, James O. Harris, Matt Landos, Marty R. Deveney., and Obsahuje bibliografii
Climate features that influence life cycles, notably severity, seasonality, unpredictability and variability, are summarized for different polar zones. The zones differ widely in these factors and how they are combined. For example, seasonality is markedly reduced by oceanic influences in the Subantarctic. Information about the life cycles of Arctic and Antarctic arthropods is reviewed to assess the relative contributions of flexibility and programming to life cycles in polar regions. A wide range of life cycles occurs in polar arthropods and, when whole life cycles are considered, fixed or programmed elements are well represented, in contrast to some recent opinions that emphasize the prevalence of flexible or opportunistic responses. Programmed responses ale especially common for controlling the appearance of stages that are sensitive to adverse conditions, such as the reproductive adult. The relative contribution of flexibility and programming to different life cycles is correlated with taxonomic affinity (which establishes the general lifecycle framework for a species), and with climatic zone, the habitats of immature and adult stages, and food., Hugh V. Danks, and Lit
The fecundity of the pseudococcid predators Nephus includens (Boheman) and N. bisignatus (Kirsch) (Coleoptera: Coccinellidae), fed on Planococcus citri Risso (Hemiptera: Pseudococcidae), was studied at several constant temperatures (15, 20, 25, 30, 32.5 and 35°C). With additional data for the development of the immature stages, life-fecundity tables were constructed and some population parameters calculated. The average total fecundities of N. includens at the above temperatures were 49.2, 97.8, 162.8, 108.5, 87.4 and 31.1 eggs/female, and average longevities 99.5, 84.7, 69.5, 61.1, 49.6 and 30.1 days, respectively. The net reproductive rates (Ro) were 8.0, 32.2, 60.7, 32.6, 20.7 and 2.6 females/female, and the intrinsic rates of increase (rm) 0.014, 0.041, 0.083, 0.086, 0.077 and 0.024 females/female/day, respectively. The average total fecundities of N. bisignatus at 15, 20, 25, 30 and 32.5 ¿C were 54.7, 72.1, 96.9, 56.0 and 22.8 eggs/female, and average longevities 116.1, 108.7, 71.8, 68.8 and 43.7 days, respectively. The net reproductive rates (Ro) were 13.9, 26.4, 31.3, 15.2 and 3.6 females/female and the intrinsic rates of increase (rm) were 0.017, 0.035, 0.060, 0.051 and 0.024 females/female/day, respectively. The survival of females at each temperature was fitted using a Weibull distribution [S(t) = exp(-(t/b)c)]. Furthermore two mathematical models [Enkegaard equation: F = (a+b+x).e(c+d.x), Analytis equation: F = a.(x-xmin)n .(xmin- x)m] were fitted to the fecundity data.
C3 photosynthesis at high light is often modeled by assuming limitation by the maximum capacity of Rubisco carboxylation (VCmax) at low CO2 concentrations, by electron transport capacity (Jmax) at higher CO2 concentrations, and sometimes by
triose-phosphate utilization rate at the highest CO2 concentrations. Net photosynthetic rate (PN) at lower light is often modeled simply by assuming that it becomes limited by electron transport (J). However, it is known that Rubisco can become deactivated at less than saturating light, and it is possible that PN at low light could be limited by the rate of Rubisco carboxylation (VC) rather than J. This could have important consequences for responses of PN to CO2 and temperature at low light. In this work, PN responses to CO2 concentration of common bean, quinoa, and soybean leaves measured over a wide range of temperatures and PPFDs were compared with rates modeled assuming either VC or J limitation at limiting light. In all cases, observed rates of PN were better predicted by assuming limitation by VC rather than J at limiting light both below and above the current ambient CO2. One manifestation of this plant response was that the relative stimulation of PN with increasing the ambient CO2 concentration from 380 to 570 µmol mol-1 did not decrease at less than saturating PPFDs. The ratio of VC to VCmax at each lower PPFD varied linearly with the ratio of PN at low PPFD to PN at high PPFD measured at 380 µmol(CO2) mol-1 in all cases. This modification of the standard C3 biochemical model was much better at reproducing observed responses of light-limited PN to CO2 concentrations from
pre-industrial to projected future atmospheric concentrations., J. A. Bunce., and Obsahuje bibliografii