The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate., N. Yan, Y.-L. Zhang, H.-M. Xue, X.-H. Zhang, Z.-D. Wang, L.-Y. Shi, D.-P. Guo., and Obsahuje seznam literatury
a1_We compared the interactive effects of temperature and light intensity on growth, photosynthetic performance, and antioxidant enzyme activity in Zizania latifolia Turcz. plants in this study. Plants were grown under field (average air temperature 9.6-25°C and average light intensity 177-375 W m-2) or greenhouse (20-32°C and 106-225 W m-2) conditions from the spring to the early summer. The results indicated that greenhouse-grown plants (GGP) had significantly higher plant height, leaf length, and leaf width, but lower leaf thickness and total shoot mass per cluster compared with field-grown plants (FGP). Tiller emergence was almost completely suppressed in GGP. Significantly higher chlorophyll (Chl) content and lower Chl a/b ratio were observed in GGP than in FGP. From 4 to 8 weeks after treatment (WAT), net photosynthetic rate (PN) was significantly lower in FGP than in GGP. However, from 9 to 12 WAT, PN was lower in GGP, accompanied by a decrease in stomatal conductance (gs) and electron transport rate (ETR) compared with FGP. Suppressed PN in GGP under high temperature combined with low light was also indicated by photosynthetic photon flux density (PPFD) response curve and its diurnal fluctuation 10 WAT. Meanwhile, ETR in GGP was also lower than in FGP according to the ETR - photosynthetically active radiation (PAR) curve. The results also revealed that GGP had a lower light saturation point (LSP) and a higher light compensation point (LCP). From 4 to 8 WAT, effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), and ETR were slightly lower in FGP than in GGP. The activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malondialdehyde (MDA) content were significantly higher from 4 to 8 WAT, but lower from 10 to 12 WAT in FGP., a2_However, catalase (CAT) activity was significantly lower in FGP from 4 to 8 WAT. Our results indicated that the growth and photosynthetic performance of Z. latifolia plants were substantially influenced by temperature, as well as light intensity. This is helpful to understand the physiological basis for a protected cultivation of this crop., N. Yan ... [et al.]., and Obsahuje bibliografii