The red flour beetle, Tribolium castaneum, is a pest of stored products. It is also regarded as a model species for studying development, genetics, biology, physiology and biochemistry. Recently, it has become a model for use in RNA interference experiments. 20-hydroxyecdysone (20E) is involved in insect metamorphosis and its role in organ development in T. castaneum are based on hormonal treatment in conjunction with RNAi. However, information on the biological, morphological and physiological effects of 20E on T. castaneum is still limited. This study reveals the responses of T. castaneum larvae to injections with various doses of 20E (100, 200, 300, 400 and 500 ng / insect). The results show that larvae injected with 20E reached the prepupal, pupal and adult stages earlier than the control group. Different degrees of morphological change were observed in nine traits, including the appearance of pupal prothetelic organs in the larvae. Moreover, an injection of a high dose of 20E reduced the body weights of the resulting insects at each stage, as well as the length and width of elytra. The enzymatic activity of α-amylase in the resulting adults also decreased significantly. This indicates that injection of 20E caused precocious metamorphosis in T. castaneum by inducing changes in morphology and α-amylase activity, and the optimal concentrations that induce such phenomena were in the range of 100-200 ng / insect. Further investigations are needed to examine the roles of 20E in the regulation of α-amylase in T. castaneum., Nujira Tatun, Phiraya Kumdi, Jatuporn Tungjitwitayakul, Sho Sakurai., and Obsahuje bibliografii
Gender-specific reproductive roles are important factors determining sexual dimorphism. Here, we investigate the effects of sex-based differences and reproductive status on the defence of Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) against infection by Steinernema feltiae (Filipjev, 1934) (Rhabditida: Steinernematidae). Female and male beetles, either virgin or post-copulation, were exposed individually to nematodes. Individuals were then sampled every 12 h, dissected, and checked for the presence of nematodes; we also measured their phenoloxidase (PO) activity. Reproductive status affected resistance to nematodes and PO activity as infected virgin individuals had a higher PO activity and lower mortality than reproducing individuals, with no differences between sexes. Mortality also increased with time, while PO activity did not change. Parasite load was related to reproductive status and sex, with reproducing females with the highest parasite loads in all treatments, and virgin males with more nematodes than sexually active males. Our results indicate that the costs of reproduction impair the immunological system of T. castaneum similarly in both sexes. It is possible, however, that other components of the immunological system that we did not measure, such as lysozyme activity, are impaired by infection with S. feltiae in a sex-specific way., Paulina Kramarz, Dariusz Małek, Maria Gaweł, Szymon M. Drobniak, Joanna Homa., and Obsahuje bibliografii
1_The young larvae of insects living on dry food produce large amounts of water by the metabolic combustion of dietary lipids. The metabolic production of water needed for larval growth, previously known as hypermetabolic responses to juvenile hormone (JH), is associated with a 10- to 20-fold increase in the rate of O2 consumption (10,000 µl O2/g/h in contrast to the usual rate of 500 µl O2/g/h). Growing and moulting larvae are naturally hypermetabolic due to the endogenous release of JH from the corpora allata. At the last, larval-pupal or larval-adult moult there is no JH and as a consequence the metabolic rate is much lower and the dietary lipid is not metabolized to produce water but stored in the fat body. At this developmental stage, however, a hypermetabolic response can be induced by the exogenous treatment of the last larval instars with a synthetic JH analogue. In D. vulpinus, the JH-treated hypermetabolic larvae survive for several weeks without moulting or pupating. In T. castaneum and G. mellonella, the JH-treated hypermetabolic larvae moult several times but do not pupate. All these larvae consume dry food and the hypermetabolic response to JH is considered to be a secondary feature of a hormone, which is produced by some subordinated endocrine organ., 2_The organ is most probably the controversial prothoracic gland (PG), which is a typical larval endocrine gland that only functions when JH is present. According to our hypothesis, PG activated by JH (not by a hypothetical PTTH) releases an adipokinetic superhormone, which initiates the conversion of dietary lipid into metabolic water. This type of metabolic combustion of dietary lipid produces large quantities of endothermic energy, which is dissipated by the larvae in the form of heat. Thermovision imaging revealed that the body of hypermetabolic larvae of G. mellonella can be as hot as 43°C or more. In contrast, the temperature of "cold" normal last instar larvae did not differ significantly from that of their environment. It is highly likely that thermovision will facilitate the elucidation of the currently poorly understood hormonal mechanisms that initiate the production of metabolic water essential for the survival of insects that live in absolutely dry conditions., Karel Sláma, Jan Lukáš., and Obsahuje seznam literatury