Salinization and alkalization of soil are widespread environmental problem and the alkali stress is more destructive than the effects caused by salt stress. To compare the mechanism of salt and alkali stresses, a sunflower variety (Helianthus annuus L. cv. Baikuiza 6) was tested under saline or alkaline conditions by mixing two neutral salts (NaCl and Na2SO4) or two alkaline salts (NaHCO3 and Na2CO3). The results showed that saline conditions differed greatly from alkaline conditions in their threshold intensities where sunflower can germinate, survive and grow. Under saline conditions, the emergence time was delayed, and the emergence rate and seedling survival rate also decreased with increasing salinity. However, under alkaline conditions, the rate of seedling survival decreased sharply but the emergence time and emergence rate did not change. In addition, the damaging effects of alkali stress on growth and photosynthesis were more severe than those of saline. In shoots, the main inorganic osmolyte and cation was K+ rather than Na+; the primary organic osmolytes were organic acid and soluble sugar rather than proline. Organic acid, NO3 -, and Cl- (only under saline condition) were the main source of anion. In addition, the osmotic adjustment and ion balance differed among sunflower roots, stems, and leaves. In conclusion, saline and alkaline conditions are two different stress conditions and there are special responses to two stress conditions for sunflower. and J. Liu, W. Q. Guo, D. C. Shi.
The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids., O. A. Rozentsvet, E. S. Bogdanova, L. A. Ivanova, L. A. Ivanov, G. N. Tabalenkova, I. G. Zakhozhiy, V. N. Nesterov., and Seznam literatury
Overexpression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased
cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of thylakoid membrane. By contrast, suppressing the expression of LeGPAT decreased the content of cis-unsaturated fatty acid in PG. Under salt stress, sense transgenic plants exhibited higher activities of chloroplastic antioxidant enzymes, lower content of reactive oxygen species (ROS) and less ion leakage compared with the wild type (WT) plants. The net photosynthetic rate (PN) and the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII) decreased more slightly in sense lines but more markedly in the antisense ones, compared to WT. D1 protein, located in the reactive center of the PSII, is the primary target of photodamage and has the highest turnover rate in the chloroplast. Under salt stress, compared with WT, the content of D1 protein decreased slightly in sense lines and significantly in the antisense ones. In the presence of streptomycin (SM), the net degradation of the damaged D1 protein was faster in sense lines than in other plants. These results suggested that, under salt-stress conditions, increasing
cis-unsaturated fatty acids in PG by overexpression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activity of antioxidant enzymes in chloroplasts. and Y. L. Sun ... [et al.].
Thermoluminescence (TL) in green plants arises from charge recombination of charged molecules in the reaction centre (RC) of photosystem 2 (PS2) in chloroplasts. The TL technique is used for detection of alterations in the architecture of PS2 RCs. The donor side 'S-states' and the acceptor side quinone molecules (QA and QB) are involved the charge recombination processes of PS2. High temperature (70-75 °C) glow peaks are also used to detect non-photosynthetic peroxidation processes in thylakoid membranes. The TL peaks with their characteristic charge recombination can be utilised for the study of chloroplast development, ageing, chemical, biotic, and abiotic stress induced alterations in the PS2 RC and for the study of the primary photochemical events of photosynthesis. The technique has been used successfully in the characterisation of transgenic plants in the study of genetically engineered organisms. and A. N. Misra ... [et al.].