The concentrations of photosynthetic pigments decreased in both chilling stressed species but the ratios of chlorophyll (Chl) a/b and total carotenoids (Car)/Chls were depressed only in faba bean. The contents of α+β carotene and lutein+lutein-5,6-epoxide remained unaffected in both species, but the de-epoxidation state involving the components of xanthophyll cycle increased in pea. Under chilling stress the photosynthetic electron transport associated with photosystem 2, PS2 (with and without the water oxidising complex) decreased in both plant species, the inhibition being higher in faba bean. The intrachloroplast quinone pool also decreased in both stressed species, yet an opposite trend was found for cytochrome b559LP. Under stress an increasing peroxidation of thylakoid acyl lipids was detected in pea, but higher protein/Chl ratio was detected in faba bean. Thus the acceptor side of PS2 is mostly affected in both chilling stressed species, but faba bean is more sensitive. and F. C. Lidon ... [et al.].
At chilling stress, the contents of photosynthetic pigments decreased significantly in maize, but in wheat the contents of chlorophyll (Chl) remained unchanged whereas the contents of total carotenoids (Car) increased. In both species the contents of α+β carotene and lutein + lutein-5,6-epoxide remained unaffected, but the de-epoxidation state involving the components of the xanthophyll cycle increased. Under chilling stress the photosynthetic electron transport also displayed a general failure in maize but in wheat only photosystem (PS) 2 coupled to the water oxidation complex was inhibited. Moreover, in stressed maize the quinone pool decreased, while the low and high potential forms of cytochrome b559 increased. In wheat only the contents of cytochrome b559LP decreased. Peroxidation of acyl lipids in the chloroplast lamellae became more distinct in chilling stressed maize but could also be detected in wheat. Thus in chilling stressed maize prevails an impairment of the acceptor site of PS2 while in wheat photodamage is restricted to the electron donation pathway from water to P680 or to the oxygen evolving complex. and F. C. Lidon ... [et al.].
Thermoluminescence (TL) in green plants arises from charge recombination of charged molecules in the reaction centre (RC) of photosystem 2 (PS2) in chloroplasts. The TL technique is used for detection of alterations in the architecture of PS2 RCs. The donor side 'S-states' and the acceptor side quinone molecules (QA and QB) are involved the charge recombination processes of PS2. High temperature (70-75 °C) glow peaks are also used to detect non-photosynthetic peroxidation processes in thylakoid membranes. The TL peaks with their characteristic charge recombination can be utilised for the study of chloroplast development, ageing, chemical, biotic, and abiotic stress induced alterations in the PS2 RC and for the study of the primary photochemical events of photosynthesis. The technique has been used successfully in the characterisation of transgenic plants in the study of genetically engineered organisms. and A. N. Misra ... [et al.].