Thermoluminescence (TL) in green plants arises from charge recombination of charged molecules in the reaction centre (RC) of photosystem 2 (PS2) in chloroplasts. The TL technique is used for detection of alterations in the architecture of PS2 RCs. The donor side 'S-states' and the acceptor side quinone molecules (QA and QB) are involved the charge recombination processes of PS2. High temperature (70-75 °C) glow peaks are also used to detect non-photosynthetic peroxidation processes in thylakoid membranes. The TL peaks with their characteristic charge recombination can be utilised for the study of chloroplast development, ageing, chemical, biotic, and abiotic stress induced alterations in the PS2 RC and for the study of the primary photochemical events of photosynthesis. The technique has been used successfully in the characterisation of transgenic plants in the study of genetically engineered organisms. and A. N. Misra ... [et al.].
In plants external stimuli are perceived through a cascade of signals and signal transduction pathways. Protein phosphorylation and de-phosphorylation is one of the most important transduction paths for the perception of signals in plants. The highest concentrations of plant phospho-proteins are located in chloroplasts. This facilitates the protection of thylakoid membranes from stress-induced damage and augments adaptive strategies in plants. In this review, the protein kinases associated with phosphorylation of thylakoid membrane protein, and the adaptive changes in thylakoid membrane architecture and developmental cues are given. The presence of membrane bound kinases in thylakoid membranes have evolutionary implications for the signal transduction pathways and the photosynthetic gene expression for thylakoid membrane protein dynamics. and A. N. Misra, A. K. Biswal.