Dung beetle assemblages were monitored using baited pitfall traps from January to December 2006 in Northern Tunisia. 4,965 beetles belonging to 37 species were trapped. Aphodius lineolatus and Onthophagus taurus dominated the assemblages. Results showed a significant seasonal variation in assemblage composition, and diversity. There were four periods of activity during the course of the year. Temporal turnover was highest in October and in February. Temporal distribution of species shows seasonal segregation and opposite patterns in the two dominant guilds (Aphodiinae-dwellers and Scarabaeidae-tunnelers). Aphodiidae-dwellers were active from autumn to spring, although they were affected by summer drought. The Aphodius-dweller showed high temporal plasticity and phenological segregation. In contrast, Scarabaeidae-tunnelers were active all year round but mainly in the spring-summer period and less so in winter. Species in this guild showed a high degree of phenological overlap and a short ecological length. Our results suggest that coexistence in dung beetle guilds is facilitated by their phenological patterns, which reflect distinct ecological requirements and biogeographical origin of species. Geotrupidae-tunnelers and Scarabaeidae-rollers were rare and occurred mainly in the summer-autumn period, when individuals of the two other guilds were rare.
Long-term spring phenological instants of 57 migratory bird species, i.e. arrival in summer visitors and departure in winter visitors, were recorded in South Moravia (Czech Republic) from 1952 through 2001 and evaluated for annual correspondence with the North Atlantic Oscillation (NAO) weather system. The migration instants occurred significantly earlier following positive winter/spring NAO index values (causing periods warmer than normal in Europe) in a number of short-distance migrants with a European winter range (e.g., Alauda arvensis, Columba palumbus, Corvus frugilegus, Motacilla alba, Phoenicurus ochruros, Phylloscopus collybita, Serinus serinus, Sturnus vulgaris, Vanellus vanellus), whereas they did not correlate with NAO in most long-distance migrants having a sub-Saharan winter range (e.g., Acrocephalus spp., Anthus trivialis, Apus apus, Cuculus canorus, Delichon urbica, Ficedula albicollis, Hippolais icterina, Hirundo rustica, Jynx torquilla, Lanius collurio, Locustella spp., Muscicapa striata, Oriolus oriolus, Phylloscopus sibilatrix, Riparia riparia, Streptopelia turtur, Sylvia spp.). The winter/spring (especially February and March) NAO conditions thus affect the migration timing of short-distance migrants that winter in western or southern Europe, and could explain their earlier than normal arrival that had been observed in Europe since the 1980s.
1_Insects feeding on the foliage of oak were studied on a mountain where species of Mediterranean deciduous and evergreen oak coexist. There were 58 insect species (54 Lepidoptera, 1 Coleopteran and 3 Hymenoptera) belonging to twenty families in the assemblage feeding on eight species of Quercus, two of which are introduced from nearby regions. The overlap in occurrence in time and of feeding niches of the insects feeding on the foliage of the different species of oak was determined using the: (a) Poole-Rathcke method, which tests phenological overlap and (b) Petraitis method, which tests niche overlap. This indicated that insect families partition seasonal time in a random and the entire assemblage in a regular way. All groups of insects partitioned season randomly except for the pairs of monophagous-oligophagous and Palearctic-Eurosiberian species, which partition season regularly. Oak folivorous insects correctly perceive the three subgenera of oaks with the exception of the planted Q. robur pedunculiflora. The folivorous insects recorded on the Mediterranean evergreen oaks (subgenus Sclerophyllodrys) differ from those on the other two subgenera (Quercus and Cerris) and co-occurring deciduous trees. The hypothesis of complete general overlap is rejected for groups based on feeding specialization, zoogeographical categories and taxonomic families. The same was the case when the entire insect assemblage was considered. The percentage of specific niche overlap of the folivorous insects is low and greatest among the monophagous species (13.8%) and those with a Mediterranean distribution (15.4%). Voltinism is not very important for this assemblage and only seven species are bivoltine of which four fed on a different species of oak in the second generation., 2_The overall conclusion is that the co-occurrence in space of these species is possible because they occur regularly at different times during the season whereas that of insect groups based on zoogeographical, taxonomic or feeding specialization are randomly dispersed in time., Maria Kalapanida, Panos V. Petrakis., and Obsahuje seznam literatury
More than half of the insects collected on snow in Central Poland were flies (Diptera). Altogether 83 species of Diptera from 27 families were identified, of which 9 families were recorded for the first time. Two thirds of the Diptera belonged to the Mycetophilidae and Trichoceridae, which were also very species-rich. Other families with many species were the Heleomyzidae, Sphaeroceridae and Phoridae.
The peak activity was in the first part of December. Flies were most active on snow when the humidity ranged from 80 to 100%, temperatures between -1 to 5°C and the snow was from 20 to 40 cm deep. The occurrence of Trichoceridae was strictly associated with high humidities, in contrast to Drosophilidae and Heleomyzidae, which were most active at lower humidities. The activity of the flies of the most frequently recorded families was displaced towards either lower (Heleomyzidae and Limoniidae) or higher temperatures (Trichoceridae, Mycetophilidae). In contrast to other families, the supranivean activity of Phoridae was strictly associated with thin snow cover.
Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, FP >10 µmol m-2 s-1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on FP to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. -1.75 and -0.60 µmol m-2 s-1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m-2 s-1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 µmol m-2 s-1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing-rather than amount-of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than FP, the model applied here failed to describe daytime carbon exchange only as a function of FP and could not be used over most of the year to fill gaps in the data. and P. Serrano-Ortiz ... [et al.].
The timing of egg laying by songbirds is known to be strongly affected by local climate, with temperature and precipitation being the most influential factors. However, most research to date relates only to the start of the breeding season: later records and the duration of the whole have not been taken into consideration. In the case of multibrooded species, productivity usually depends on the length of the breeding season. In this work we analysed climatic factors affecting breeding season length of an urban blackbird (Turdus merula) population. The study was conducted in two parks in the city of Szczecin, north-western Poland, spanning 14 breeding seasons since 1997. We found that over the study period, the breeding season became shorter as a result of colder springs and possibly because
of warmer June-July temperatures. Our study revealed a positive relationship between breeding season length and the mean and mean
minimum temperatures in April. Total precipitation in April-July also positively influenced breeding season length. The present survey confirms the influence of temperature and precipitation on the breeding season length of blackbird.