Together with the development of peritoneal dialysis (PD), appropriate animal models play an important role in the investigation of physiological, pathophysiological and clinical aspects of PD. However, there is still not an ideal experimental PD animal model. In this study, 45 Sprague-Dawley rats were divided into three groups. Grou p 1 (n=15) was receiving daily peritoneal injection through the catheter connected to the abdominal cavity, using PD solution containing 3.86 % D-glucose. Group 2 (n=15) was receiving daily peritoneal injection of 0.9 % physiological saline through a catheter. Group 3 (n=15), which was subjected to sham operation, served as controls. Our results showed that WBC counts in peritoneal effluent of Group 1 were slightly higher than those of Group 2 and control group, respectively (p<0.05). However, there was no episode of infection in any group. In addition, there was no significant difference in neutrophils fractions among these three groups. Hematoxylin-eosin and Masson’s trichrome staining demonstrated a dramatic increase in thickness of the mesothelium-to-muscle layer of peritoneum exposed to high glucose (Group 1) compared to Group 2 and controls (p<0.01). These data indicated that we established a novel rat model of PD with a modified catheter insertion method. This model is more practical, easy to operate, not too expensive and it will facilitate the investigate of long-term effects of PD., Y.-M. Peng ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Peritoneal dialysis (PD) is a well established method of depuration in uremic patients. Standard dialysis solutions currently in use are not biocompatible with the peritoneal membrane. Studying effects of dialysate on peritoneal membrane in humans is still a challenge. There is no consensus on the ideal experimental model so far. We, therefore, wanted to develop a new experimental non-uremic rabbit model of peritoneal dialysis, which would be practical, easy to conduct, not too costly, and convenient to investigate the long-term effect of dialysis fluids. The study was done on 17 healthy Chinchilla male and female rabbits, anesthetized with Thiopental in a dose of 0.5 mg/kg body mass. A catheter, specially made from Tro-soluset (Troge Medical GMBH, Hamburg, Germany) infusion system, was then surgically inserted and tunneled from animals' abdomen to their neck. The planned experimental procedure was 4 weeks of peritoneal dialysate instillation. The presented non-uremic rabbit model of peritoneal dialysis is relatively inexpensive, does not require sophisticated technology and was well tolerated by the animals. Complications such as peritonitis, dialysis fluid leakage, constipation and catheter obstruction were negligible. This model is reproducible and can be used to analyze the effects of different dialysis solutions on the rabbit peritoneal membrane., S. Zunic-Bozinovski, Z. Lausevic, S. Krstic, N. Jovanovic, J. Trbojevic-Stankovic, B. Stojimirovic., and Obsahuje bibliografii a bibliografické odkazy
Permanent irritation of the peritoneum during peritoneal dialysis (PD) treatment leads to local chronic inflammation and subsequently activation of processes driving fibrogenesis in the long-term. The aim of the study was to compare the peritoneal effluent transcriptome of 20 patients treated less and 13 patients treated more than 2 years using microarray analysis. An increased expression of genes associated with an immune response was observed in long-term treated patients with well preserved peritoneal function, when compared to patients treated less than 2 years. From 100 genes highly expressed in long-term patients, a significant up-regulation of six was found by RT-qPCR: LY9 (lymphocyte antigen 9), TNSFR4 (tumor necrosis factor receptor superfamily, member 4), CD 79A (CD79a molecule), CCR7 (chemokine C-C receptor 7), CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) and IL2RA (interleukin 2 receptor alpha chain). Furthermore, the effluent cell population was analysed. A positive relationship between the number of granulocytes and NK cells on one hand, and duration of PD treatment on the other, was shown. We conclude, that the mechanisms of adaptive immunity promoting T helper 2 cells response are activated in the long-term before functional alterations develop. It consequently might trigger the fibrosis promoting processes.