The principal function of the thylakoid membrane depends on the integrity of the lipid bilayer, yet almost half of the thylakoid lipids are of non-bilayer-forming type, whose exact functions are not fully understood. Non-bilayer lipids can be extruded from the membrane in the presence of high concentrations of co-solutes. We applied 2 M sucrose to induce lipid phase separation in isolated thylakoid membranes, following consequent structural and physiological effects. Circular dichroism spectroscopy indicated significant changes in the chiral macro-arrangement of the pigment-protein complexes, which were reversed after washing out the co-solute. Similarly, merocyanine-540 fluorescence suggested reversible changes in the lipid phases. The PSII function, as tested by chlorophyll fluorescence induction transients and time-resolved fluorescence, was almost unaffected. However, the presence of sucrose dramatically increased the PSII thermostability, which can partly be explained by a direct osmolyte effect and partly by the lipid phase separation stabilizing the stacked membrane., C. Kotakis, P. Akhtar, O. Zsiros, G. Garab, P. H. Lambrev., and Obsahuje bibliografické odkazy
The steady-state oxygen evolution rate was previously shown to be stimulated by the disaccharide trehalose in PSII suspension. Here we showed a similar increase in the rate of oxygen evolution in PSII core complexes from spinach in solution and in proteoliposomes in the presence of trehalose. Using direct electrometrical technique, we also revealed that trehalose had no effect on the kinetics of electron transfer from Mn to redox-active-tyrosyl radical, YZ (S1 - S2 transition), while it accelerated the kinetics of electrogenic proton transport during S2 - S3 and S4 - S0 transitions of the wateroxidizing complex (WOC) induced by the first, second, and third laser flashes in dark-adapted PSII samples. These observations imply that the effect of trehalose occurrs due to its interaction with the WOC., M. D. Mamedov, E. S. Nosikova, L. A. Vitukhnovskaya, A. A. Zaspa, A. Yu. Semenov., and Obsahuje bibliografické odkazy
Tissue betaine is an intracellular osmolyte that also provides a store of labile methyl groups. Despite these important biological roles, there are few data regarding tissue betaine content. We measured the betaine concentration of plasma and various tissues (brain, heart, lungs, liv er, kidney, spleen, intestine, reproductive tissues, skeletal muscle and skin) in male and female rats and assessed whether there were any gender-specific differences in betaine content or distribution and whether there was any relationship between tissue accumulation and plasma levels. Betaine was highest in the liver and kidney with values ranging from 1.6 to 9.5 mmol/l and 2.0 to 5.4 mmol/l, respectively. Plasma betaine concentrations were significantly lower than tissue levels except in the brain ( ≈ 25 % of plasma) and skeletal muscle (similar to pl asma). Regression analysis of the combined male and female data revealed a significant plasma-related accumulation of betaine in the heart, skin and skeletal muscle, while the lung, liver, kidney, spleen, and intestine showed significant plasma-related and plasma- independent accumulations of be taine. The betaine content of the skin, liver and kidney was no t significantly different between males and females, but in plasma and all tissues analyzed it was significantly higher in males (P<0.01)., S. Slow, M. Lever, S. T. Chambers, P. M. George., and Obsahuje bibliografii