The protein secondary structure and pigments' microenvironment in photosystem 1 (PS1) complexes were studied in the temperature range of 25-80 °C using Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, respectively. Quantitative analysis of the component bands of the amide I band (1 700-1 600 cm-1) showed no significant change below 50 °C. However, apparent conformational changes occurred at 60 °C and further continued at 70 and 80 °C accompanied with transitions of secondary structure mainly from α-helix to the β-sheet structures. CD analysis demonstrated that the regular arrangement, viz. protein microenvironment of pigments of PS1 complexes, was destroyed by heat treatment which might come from the changes of protein secondary structure of PS1. The CD signals at 645 nm contributed by chlorophyll (Chl) b of light-harvesting complex 1 (LHC1) were easily destroyed at the beginning of heat treatment (25-60 °C). When temperature reached 70 and 80 °C, the CD signals at 478 nm contributed mainly by Chl b of LHC1 and 498 nm contributed by carotenoids decreased most rapidly, indicating that LHC1 was more sensitive to high temperature than core complexes. In addition, the oxygen uptake rate decreased by 90.81 % at 70 °C and was lost completely at 80 °C showing that heat treatment damaged the regular function of PS1 complexes. This may be attributed to heat-induced changes of pigment microenvironment and protein secondary structure, especially transmembrane α-helix located in PsaA/B of PS1. and Z.-H. Hu ... [et al.].
The principal function of the thylakoid membrane depends on the integrity of the lipid bilayer, yet almost half of the thylakoid lipids are of non-bilayer-forming type, whose exact functions are not fully understood. Non-bilayer lipids can be extruded from the membrane in the presence of high concentrations of co-solutes. We applied 2 M sucrose to induce lipid phase separation in isolated thylakoid membranes, following consequent structural and physiological effects. Circular dichroism spectroscopy indicated significant changes in the chiral macro-arrangement of the pigment-protein complexes, which were reversed after washing out the co-solute. Similarly, merocyanine-540 fluorescence suggested reversible changes in the lipid phases. The PSII function, as tested by chlorophyll fluorescence induction transients and time-resolved fluorescence, was almost unaffected. However, the presence of sucrose dramatically increased the PSII thermostability, which can partly be explained by a direct osmolyte effect and partly by the lipid phase separation stabilizing the stacked membrane., C. Kotakis, P. Akhtar, O. Zsiros, G. Garab, P. H. Lambrev., and Obsahuje bibliografické odkazy
The conserved residue Thr42 of ε-subunit of the chloroplast ATP synthase of maize (Zea mays L.) was substituted with Cys, Arg, and Ile, respectively, through site-directed mutagenesis. The over-expressed and refolded ε-proteins were purified by chromatography on DEAE-cellulose and FPLC on mono-Q column, which were as biologically active (inhibiting Ca2+-ATPase activity and blocking proton gate) as the native ε subunit isolated from chloroplasts. The εT42C and εT42R showed higher inhibitory activities on the soluble CF1(-ε) Ca2+-ATPase than the εWT. The εT42I inhibited the Ca2+-ATPase activity of soluble CF1 and restored photophosphorylation activity of membrane-bound CF1 deficient in ε the most efficiently. Far-ultraviolet CD spectra showed that the portions of α-helix and β-sheet structures of the three mutants were somewhat different from εWT. Thus the conserved residue Thr42 may be important for maintaining the structure and function of the ε-subunit and the basic functions of the ε-subunit as far as an inhibitor of Ca2+-ATPase and the proton gate are related. and Zhang-Lin Ni, Da-Fu Wang, Jia-Mian Wei.
The peptide surfactants are amphiphilic peptides which have a hydrophobic tail and a hydrophilic head, and have been reported to stabilize and protect some membrane proteins more effectively than conventional surfactants. The effects of a class of peptide surfactants on the structure and thermal stability of the photosynthetic membrane protein lightharvesting complex II (LHCII) in aqueous media have been investigated. After treatment with the cationic peptide surfactants A6K, V6K2, I5K2 and I5R2, the absorption at 436 nm and 470 nm decreased and the absorption at 500-510 nm and 684-690 nm increased. Moreover, the circular dichroism (CD) signal intensity in the Soret region also decreased significantly, indicating the conformation of some chlorophyll (Chl) a, Chl b, and the xanthophyll molecules distorted upon cationic peptide surfactants treatment. The anionic peptide surfactants A6D and V6D2 had no obvious effect on the absorption and CD spectra. Except for A6D, these peptides all decreased the thermal stability of LHCII, indicating that these peptides may reconstitute protein into a less stable conformation. In addition, the cationic peptide surfactants resulted in LHCII aggregation, as shown by sucrose gradient ultracentrifugation and fluorescence spectra. and S. Liu, Y. Qiu, D.-Y. Yu