The effect of photoperiod on parasitization of the eggs of the Angoumois grain moth, Sitotroga cerealella (Olivier, 1789) by Trichogramma principium Sugonyaev & Sorokina, 1976 was investigated under several photoperiodic regimes of L : D = 3 : 21, 6 : 18, 9 : 15, 12 : 12, 15 : 9, 18 : 6 and 21 : 3. In all regimes, certain wasps delayed ovipositing in this non-preferred host. Potential fecundity of T. principium females (the number of mature ovarial eggs at emergence) and subsequent oogenesis (estimated by the number of mature ovarial eggs in non-ovipositing females) was independent of photoperiod. However, the percentage of females that oviposited was higher for females that developed and were kept under 6-12 h long photophase than for those that developed and were kept under ultra short (3L : 21D) and under long (18L : 6D and 21L : 3D) photophases. The average duration of the pre-oviposition (egg retention) period showed the opposite pattern to the photoperiodic response. A possible explanation of this reaction is that the delay in oviposition is adaptive if the probability of finding a better host is high. In autumn, when the last Trichogramma females are still active but their lepidopteran hosts are already much less abundant, then parasitization of any suitable host is the best strategy.
Population density during nymphal development affects body size, developmental rate and wing polymorphism in semiaquatic bugs. Nymphs from crowded habitats grow faster and thus gain an advantage in the later stadia. Rapid development results in smaller body size in several gerrids. Macropterous adults develop more frequently at high population densities in most species, which enables the bugs to leave crowded habitats. Three European widespread species Mesovelia furcata Mulsant & Rey, 1852 (Mesoveliidae), Microvelia reticulata Burmeister, 1835 and Velia caprai Tamanini, 1947 (Veliidae) were reared individually and simultaneously either at a low or high population density. Duration of postembryonic development, wing morph, body size and length of distal oocyte in females were recorded. High population density accelerates development in Mesovelia furcata and Microvelia reticulata. However, there was no trade-off between developmental rate and body size. Accelerated development without a decrease in body size was probably because maturation was delayed. Individually reared nymphs developed faster than nymphs from communal cohorts. No long-winged Microvelia reticulata specimen developed in any treatment. However, more macropterous individuals developed in high-density treatments in Mesovelia furcata (significant) and Velia caprai (not significant). All the nymphs of the species that were reared individually developed into apterous adults. The results suggest that population density strongly influences the life history of semiaquatic bugs. However, the only commonly shared response seems to be an increase in developmental rate when reared at high population densities. Other traits such as wing dimorphism, body size and rate of oogenesis differ at the species level.
The insect growth regulator NC-184, a juvenile hormone mimic, prevents moulting to the adult stage in the desert locust, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae). Male nymphs treated in the penultimate or final nymphal instar with NC-184 exhibit precocious mating behaviour in the final instar. We examined whether this chemical affects the development of the internal reproductive organs of crowded nymphs. In treated males, both accessory glands and seminal vesicles were underdeveloped, and no sperm was found in the seminal vesicle, whereas these organs in control individuals had greatly increased in size 10 days after treatment, when all the insects had moulted to adults. Testis size in treated males was similar to that in controls, regardless of their smaller body size due to the inhibition of moulting. Oogenesis and development of spermatheca in females treated with NC-184 continued to some degree, but no eggs matured, unlike what occurred in the control. In conclusion, treatment of S. gregaria nymphs with NC-184 resulted in changes in the reproductive organs in both sexes.
The organization and development of ovaries in representatives of two families (Putoidae and Monophlebidae) of scale insects are described. Developing ovaries of Puto albicans McKenzie, 1967 and Crypticerya morrilli (Cockerell, 1914) consist of numerous clusters of cystocytes that are arranged in the form of rosettes. At the end of the last nymphal instar these clusters start to protrude from the interior of the ovary into the body cavity and the ovarioles begin to be formed. The ovary of a young female is composed of about 200 spherical telotrophic ovarioles devoid of terminal filaments. The ovarioles of C. morrilli contain 8 germ cells (7 trophocytes and a single oocyte). From 25 to 45 germ cells (23-43 trophocytes and 2 or 3 oocytes) occur in the ovarioles of P. albicans. An ovariole of an adult female is subdivided into a trophic chamber (tropharium), vitellarium and ovariolar stalk (pedicel). At each stage of development, the ovaries are accompanied by large cells (termed bacteriocytes) that contain endosymbiotic microorganisms. The organization of the ovary in P. albicans is more similar to that in archaeococcoid scale insects than in neococcoid taxa. In contrast, the number of germ cells per ovariole in C. morrilli is not typical of other archaeococcoids, but resembles the derived condition seen in other iceryine taxa. The classification and phylogeny of scale insects are discussed in the light of these results.
The process of oogenesis of C. chalcoides living in Lake Tödürge was histologically studied from monthly samples during April–November 2000. The process was divided into five stages (previtellogenic, cytoplasmic growth, vitellogenic growth, yolk oocyte and mature oocyte). Oocytes of the previtellogenic and mature phases were mainly seen in July and May, respectively. Oocytes and nuclei diameters were observed between 38–1470 μm and 29–270 μ m until ovulation. C. chalcoides is thus considered to be synchronous. The ovulation period started in late May and ended in the beginning of July.