In the mammalian neocortex, the calcium-binding protein calretinin is expressed in a subset of cortical interneurons. In the recent years, research on interneurons is one of the most rapidly growing fields in neuroscience. This review summarizes the actual knowledge of the functions of calretinin in neuronal homeostasis and particularly of the distribution, connectivity and physiological properties of calretinin expressing interneurons in the neocortex of rodents and primates, including humans. The possible neuroprotective role of calretinin and the presumed “resistance” of calretinin-expressing interneurons to various pathological processes are also discussed., F. Barinka, R. Druga., and Obsahuje bibliografii a bibliografické odkazy
Inhibitory neurotransmission plays a substantial role in encoding of auditory cues relevant for so und localization in vertebrates. While the anatomical organization of the respective afferent auditory brainstem circuits shows remarkable similarities between mammals and birds, the properties of inhibitory neurotransmission in these neural circuits are strikingly different. In mammals, inhibition is predom inantly glyciner gic and endowed with fast kinetics. In birds, inhibition is mediated by γ - Aminobutiric acid (GABA) and too slow to convey temporal information. A further prominent difference lies in the mechanism of inhibition in the respective systems. In auditory brainstem neurons of mammals, [Cl-] i undergoes a developmental shift causing the actions of GABA and glycine to gradually change from depolarization to the ‘classic’ hyperpolarizing-inhibition before hearing onset. Contrary to this, in the mature avian auditory brainstem Cl - homeostasis mechanisms accurately adjust the Cl - gradient to enable depolarizing, but still very efficient, shunting inhibition. The present review considers the mechanisms underlying development of the Cl - homeostasis in the auditory system of mammals and birds and discusses some open issues that require closer attention in future studies., I. Milenković, R. Rübsamen., and Obsahuje bibliografii a bibliografické odkazy
Associative neural network models are a commonly used methodology when investigating the theory of associative memory in the brain. Comparisons between the mammalian hippocampus and associative memory models of neural networks have been investigated [12]. Biologically based networks are systems built of complex biologically realistic cells with a variety of properties. Here we compare and contrast associative memory function in a network of biologically-based spiking neurons [22] with previously published results for a simple artificial neural network model [11]. We shall focus primarily on the recall process from a memory where patterns have previously been stored by Hebbian learning. We investigate biologically plausible implementations of methods for improving recall under biologically realistic conditions, such as a sparsely connected network. Network dynamics under recall conditions are further tested using network configurations including complex multi-compartment inhibitory interneurons, known as basket cells.
Plant volatiles can synergize the response to moth pheromone. Synthetic pheromone analogs, in turn, have the opposite effect in reducing pheromone attractiveness. To determine how these two types of stimuli interact and influence male moth behaviour, we performed wind tunnel experiments on the grapevine moth, Lobesia botrana. We noticed that a blend of host plant volatiles [(E)-β-caryophyllene, 1-hexanol, (Z)-3-hexenyl acetate and 1-octen-3-ol in a 100:20:10:5 ratio] significantly increased the response of males to an optimized blend of sex pheromone [(7E,9Z)-dodeca-7,9-dienyl acetate (E7,Z9-12:Ac), (7E,9Z)- dodeca-7,9-dienol (E7,Z9-12:OH) and (Z)-9-dodecenyl acetate (Z9-12:Ac)] in a 100:10:2 ratio. However, the response of males to the natural attractant was significantly reduced by two analogs [(9E,11Z)-tetradeca-9,11-dien-2-one (MK 2) and [(9E,11Z)-1,1,1-trifluoro-tetradeca-9,11-dien-2-one (TFMK 3)], of the major component of the sex pheromone of the insect (E7,Z9-12:Ac). When both stimuli were tested on males at pheromone:analog:plant volatile blend 1:100:1000 ratio, the plant blend offset the inhibitory effect induced by TFMK 3 but not that of MK 2. Our results show for the first time that under laboratory conditions plant volatiles can prevent inhibition by a pheromone analog., Albert Sans, Miguel Morán, Magí Riba, Ángel Guerrero, Jaume Roig, César Gemeno., and Obsahuje bibliografii
The respiratory system is constantly exposed to pathogens which enter the lungs by inhalation or via blood stream. Lipopolysaccharide (LPS), also named endotoxin, can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local inflammation and systemic toxicity. LPS affects alveolar type II (ATII) cells an d pulmonary surfactant and although surfactant molecule has the effective protective mechanisms, excessive amount of LPS interacts with surfactant film and leads to its inactivation. From immunological point of view, surfactant specific proteins (SPs) SP-A and SP-D are best characterized, however, there is increasing evidence on the involvement of SP-B and SP-C and certain phospholipids in immune reactions. In animal models, the instillation of LPS to the respiratory system induces acute lung injury (ALI). It is of clinical importance that endotoxin-induced lung injury can be favorably influenced by intratracheal instillation of exogenous surfactant. The beneficial effect of this treatment was confirmed for both natural porcine and synthetic surfactants. It is believed that the surfactant preparations have anti-inflammatory properties through regulating cytokine production by inflammatory cells. The mechanism by which LPS interferes with ATII cells and surfactant layer, and its consequences are discussed below., M. Kolomaznik, Z. Nova, A. Calkovska., and Obsahuje bibliografii