The chromosome complements of thirteen species of the planthopper family Dictyopharidae are described and illustrated. For each species, the structure of testes and, on occasion, ovaries is additionally outlined in terms of the number of seminal follicles and ovarioles. The data presented cover the tribes Nersiini, Scoloptini and Dictyopharini of the subfamily Dictyopharinae and the tribes Ranissini, Almanini, and Orgeriini of the Orgeriinae. The data on the tribes Nersiini and Orgeriini are provided for the first time. Males of Hyalodictyon taurinum and Trimedia cf. viridata (Nersiini) have 2n = 26 + X; Scolops viridis, S. sulcipes, and S. abnormis (Scoloptini) 2n = 36 + X; Callodictya krueperi (Dictyopharini) 2n = 26 + X; Ranissus edirneus and Schizorgerius scytha (Ranissini) 2n = 26 + X. Males of Almana longipes and Bursinia cf. genei (Almanini) have 2n = 26 + X and 2n = 24 + XY, respectively. The latter chromosome complement was not recorded previously for the tribe Almanini. Males of Orgerius ventosus and Deserta cf. bipunctata (Orgeriini) have 2n = 26 + X. The testes of males of A. longipes and B. cf. genei each have 4 seminal follicles, which is characteristic of the tribe Almanini. Males of all other species have 6 follicles per testis. When the ovaries of a species were also studied, the number of ovarioles was coincident with that of seminal follicles. For comparison, Capocles podlipaevi (2n = 24 + X and 6 follicles per testis in males) from the Fulgoridae, the sister family to Dictyopharidae, was also studied. We supplemented all the data obtained with our earlier observations on Dictyopharidae. The chromosomal complement of 2n = 28 + X or that of 2n = 26 + X and 6 follicles per testis are suggested to be the ancestral condition among Dictyopharidae, from which taxa with various chromosome numbers and testes each with 4 follicles have differentiated.
The karyotypes of one mud loach and three spined loach species occurring in the Far East region of Russia are presented. Misgurnus nikolskyi has 2n=50 with NF=64, Cobitis lutheri has 2n=50 and NF=70, C. choii has 2n=50 and NF=68, and C. melanoleuca has 2n=50 and NF=72. The karyotype of M. mohoity is proved to consist of 50 chromosomes. These results are discussed in relation with some taxonomic and evolution problems in loaches
The karyotypes of Sciurus alphonsei from the Brazilian Atlantic Forest and S. spadiceus from the Amazon region are described. Standard staining revealed 2n = 40 and FN = 76 in both species, with all autosome pairs being biarmed. C-banding in S. alphonsei showed pericentromeric labelling only. The karyotypes obtained are similar to those known for Holarctic taxa, except S. vulgaris and S. v. coreae that have FN = 72. The karyotypic stability of the diploid number in genus Sciurus is confirmed.
Karyotypes and testis structure of 14 species representing 9 genera (Latissus, Bubastia, Falcidius, Kervillea, Mulsantereum, Mycterodus, Scorlupaster, Scorlupella and Zopherisca) of the planthopper tribe Issini (Issidae) are presented. All the karyotypes are illustrated by meiotic and occasionally mitotic figures. The male karyotypes of most of the species analyzed are 2n = 26 + X, the exception being Falcidius limbatus, which has a karyotype of 2n = 24 + neo-XY. The latter is the first report of the neo-XY system in the family Issidae. The species studied are found to be similar in having NORs on the largest pair of autosomes, but differ significantly in the amount and distribution of C-heterochromatin along the chromosomes. In contrast to the conserved chromosome numbers, the highly variable follicle number in the testes suggests rapid evolution of the tribe Issini. On the basis of its specific follicle number, it is proposed that Zopherisca tendinosa skaloula Gnezdilov & Drosopoulos, 2006 be upgrade to a species: Z. skaloula stat. n. The cytological and taxonomic significance of results presented are discussed.
Coatis are traditionally divided into two genera (Nasua and Nasuella). Coatis from the lowlands of the Neotropics are larger (Nasua nasua in South America and Nasua narica in Central America) than those from the highlands in the Andean Cordilleras (Nasuella olivacea and maybe Nasuella meridensis). Some authors have claimed that Nasuella should be included in Nasua but strong data have not been provided to support this statement. We reported an extensive mitochondrial (mt) DNA analysis with 205 specimens with complete mitogenomes. Some N. olivacea were intermixed among haplogroups of N. nasua, some haplotypes of N. narica were intermediate between N. nasua and the most recent haplotypes of the Central American N. narica, and N. narica from southern Central America and northern Colombia were introgressed with mtDNA from N. olivacea. Furthermore, the spatial genetic structure of N. nasua, N. narica, and N. olivacea were practically identical. Additionally, we also show, for first the time, the karyotype of N. olivacea. The chromosome morphology of N. olivacea was un-differentiable from that of N. nasua. These data fail to support the independence of these two genera.
As a part of ongoing cytogenetic studies on the bug family Nabidae (Heteroptera), the karyotypes and meiotic patterns of male Nabis (Aspilaspis) viridulus Spinola, 1837, N. (A.) indicus (Stål, 1873) (subfamily Nabinae) and Prostemma guttula (Fabricius, 1787) (subfamily Prostemmatinae) are described.
N. viridulus and N. indicus differ from P. guttula in their chromosome numbers, which are 2n = 32 + XY and 2n = 26 + XY, respectively, and behaviour of the sex chromosomes in male meiosis, which, respectively, show "distance pairing" and "touch-and-go pairing" in spermatocyte metaphase II. The karyotype of 2n = 34 and "touch-and-go pairing" are considered to be plesiomorphic characters in Nabidae. The evolutionary mechanisms that might underlie different chromosome numbers, the taxonomic significance of karyotype variation and the distribution of meiotic patterns in the family, are discussed.
The aim of this study was to obtain information on the karyotypes, testes and ovaries of three fulgoroid families, mainly in the Issidae but also in the Caliscelidae and Acanaloniidae. For the Issidae, the data is for 19 species belonging to 11 genera of the subtribes Issina (2 species, 1 genus), Hysteropterina (14 species, 9 genera) and Agalmatiina (3 species, 2 genera) of the tribe Issini. The male karyotypes are shown to be quite uniform across the tribe, with 2n = 26 + X in all species studied except Latilica maculipes (Melichar, 1906) with 2n = 24 + X. The modal karyotype, 2n = 26 + X, matches the most probable ancestral state in the Fulgoroidea. In the majority of cases the number of seminal follicles in males and ovarioles in females are stable within but fairly variable among the species, the modal value of the follicle number is 10 per testis. Contrary to what might be expected from other fulgoroid families, such as the Dictyopharidae and Delphacidae, the variability in these characters revealed neither regular trends nor evident correspondence with the taxonomy of Issidae. In the Caliscelidae, all species studied had testes consisting of 6 follicles each and karyotypes of 2n = 24 + X and 26 + XY, respectively, in 3 and 1 species. The only representative studied of the Acanaloniidae, Acanalonia bivittata (Say, 1825), had 2n = 24 + X and 13 follicles in its testis. The variability in all the characters investigated is discussed and compared to other fulgoroid families, primarily to the most extensively studied families, Delphacidae and Dictyopharidae.