Geographic isolation, altitude, climate, landscape and habitat are significant predictors of butterfly diversity in mountain ecosystems. Their diversity and its dependence on altitude, aspect (compass bearing) and biogeographic characteristics of the butterflies were surveyed on the karst mountain Biokovo in southern Croatia. The results affirm that there is a high diversity of butterflies in the study area and the species composition and biogeographic elements are more dependent on altitude than aspect of the mountain. The present study indicates that climate, relief and habitat preferences strongly influence the biogeographic features of species and the relationship between species richness per site and altitude, aspect and the altitude-aspect interaction. and Iva Mihoci, Vladimir Hršak, Mladen Kučinić, Vlatka Mičetić Stanković, Antun Delić, Nikola Tvrtković.
Interest in insects as conservation foci and as tools in broader conservation assessment has accelerated markedly in recent years, but the diversity and complexity of insect life demands a more focussed and structured approach to \"biodiversity\" and inventory studies than has commonly occurred. Strategies for insect conservation are reviewed, together with the variety of uses for insects as ecological tools in broader monitoring of environmental quality. Principles fur selecting optimal focal groups are discussed, and the importance of developing standard protocols to sample and interpret insect assemblages emphasised. The global values and relevance of the pioneering lessons in insect conservation developed in Europe are summarised.
The aim of the present study was to find groups of moths suitable for estimating changes in the abundance and richness of local and regional biodiversity in a temperate forest. We captured macro-moths from May to October over a 5-year period (2005–2009) at various sites in Mt. Jirisan National Park (JNP) in southern Korea. Six taxa were selected based on a strong correlation between the number of species in these taxa and total number of species of large moths: Ennominae (Enn), Arctiinae (Arc), Hermininae (Her), Notodontidae (Not), Drepanidae (Dre) and Ophiderinae (Oph). Of these, combinations of four groups were found to have the best predictive capability. We determined whether these indicator groups could be used to reveal mean differences in species abundance according to spatial (forest type, altitude) and temporal variables (monsoon season) since moth composition and abundances were closely related with these variables. The mean differences in the groups of moths in the two types of forest (Arc, Dre, Enn, Not), two altitudes (Dre, Enn, Her, Oph) and two seasons (Dre, Enn, Oph) were significant. Overall, it was revealed that a set of four groups, including two taxa (Dre and Enn), could be used to show differences in local and regional biodiversity of moths in southern Korean temperate forest., Jeong-Seop An, Sei-Woon Choi., and Obsahuje seznam literatury