Estimating the spatial dispersion of pest arthropods is crucial for the development of reliable sampling programs and one of the main components of integrated pest management. The natural spatial distribution of a population of a species may be random, uniform, or aggregated and can be so classified based on calculation of variance to mean relations and related dispersion indices. In this work some classical density-invariant dispersion indices and related regression models are used for the first time to quantify the spatial dispersion of an important peach pest Anarsia lineatella Zeller (Lepidoptera: Gelechiidae) and construct fixed precision sequential sampling schemes. Taylor's power law, Iwao's patchiness regression and Nachman's model were used to analyse the damage to peaches caused by A. lineatella. All three regression models fit the data well, although the results indicate that Iwao's patchiness model provides a better description of the relationship between variance and mean density. Taylor's b and Iwao's b regression indices were both significantly smaller than 1, indicating that the distribution of individuals was uniform rather than random or aggregated. According to Green's and Kuno's models, the minimum sample size at the precision level of 0.2 varies from 3 samples, when total population density is more than 3 larvae/sample, to 10 samples, when population density is between 1 and 2 larvae/sample. Kuno's fixed sampling plan indicates that a small number of samples (i.e., 3-10 branches with fruit) is sufficient to estimate the mean population density of A. lineatella larvae with a precision of 0.2. The Resampling for validation of sampling plans (RVSP) method confirmed that the average level of precision of the fixed sequential plans matched the desired precision in most cases. The sampling plan presented here provides a level understanding of A. lineatella spatial ecology suitable for pest manage, Petros Damos., and Obsahuje bibliografii
The aim of the present study was to find groups of moths suitable for estimating changes in the abundance and richness of local and regional biodiversity in a temperate forest. We captured macro-moths from May to October over a 5-year period (2005–2009) at various sites in Mt. Jirisan National Park (JNP) in southern Korea. Six taxa were selected based on a strong correlation between the number of species in these taxa and total number of species of large moths: Ennominae (Enn), Arctiinae (Arc), Hermininae (Her), Notodontidae (Not), Drepanidae (Dre) and Ophiderinae (Oph). Of these, combinations of four groups were found to have the best predictive capability. We determined whether these indicator groups could be used to reveal mean differences in species abundance according to spatial (forest type, altitude) and temporal variables (monsoon season) since moth composition and abundances were closely related with these variables. The mean differences in the groups of moths in the two types of forest (Arc, Dre, Enn, Not), two altitudes (Dre, Enn, Her, Oph) and two seasons (Dre, Enn, Oph) were significant. Overall, it was revealed that a set of four groups, including two taxa (Dre and Enn), could be used to show differences in local and regional biodiversity of moths in southern Korean temperate forest., Jeong-Seop An, Sei-Woon Choi., and Obsahuje seznam literatury
On October 2006, during an episode of abnormally warm weather, the African moth Cornifrons ulceratalis (Lederer, 1858) was captured simultaneously for the first time in several sites in north-eastern Spain, the Balearic Islands and southern France. A deep depression situated over the Atlantic at the time gave rise to warm south-westerly winds, accompanied by suspended dust, that blew towards the north-western Mediterranean Basin. Back trajectories of air masses at two different altitudinal levels indicate that the moths most probably originated from an area located in Morocco and northern Algeria, where C. ulceratalis can be extremely abundant. With winter approaching, this invasion of a typically non-migratory species into the north-western Mediterranean Basin provides a good example of the so-called "pied piper" phenomenon, by which wind-borne insects may be carried into areas unfavourable for survival or reproduction. However, because climate change may make the establishment of this and other African species more likely in the future, we suggest that monitoring of this process may become an essential issue in the coming years.