The relationship between species richness of plants and animals and altitude can be either hump-shaped, a monotonic decrease or increase. In this study the altitudinal distribution of moths on one of the highest mountains in South Korea was investigated. Moths were captured using a UV-light trap from May to October in 2007 and 2008. This revealed that the relationship between the total numbers of moth species and individuals and altitude is hump-shaped. A significant relationship was also recorded between the size of the area at each altitude and moth abundance and richness. However, the evenness index yielded a consistent decrease with increase in altitude because of the dominance of few species at high altitudes. Non-metric multidimensional scaling identified two major axes for the moth assemblage on Mount Jirisan. The correlations between the axes and variables demonstrated that the first axis was strongly correlated with altitude and aspect and the second axis with forest and site location.
We analyzed patterns of geometrid species richness in South Korea to assess the observed and estimated species richness gradient, to determine predictors for the distribution of moths and to investigate the effect of latitude on the species richness of moths in the Korean peninsula. The species richness was analyzed for 541 geometrid moths across 17 quadrates, with each quadrate defined by one degree of latitude and longitude. Two subgroups of geometrid moths were adopted according to their distributional ranges: Palearctic (435 species, 80.4%) and Oriental (106 species, 19.6%). To investigate the relationship between the distribution of geometrid moths and environment, eight variables were used. The estimated species richness of geometrids was calculated using the Chao 2 estimator because there was uneven sampling effort across the quadrates. Due to multicollinearity we used covariance values produced by principal component analysis and the first four axes adopted have eigenvalues >= 1.0. Two models of regression analyses were applied based on multiple linear regression using eight variables (model I) and principal components axes (model II). Of the two subgroups of geometrid moths the Palearctic species richness increased with latitude, but not that of Oriental species richness. A combined effect of abiotic (maximum altitude, temperature, rainfall, and latitude) and biotic (plant species richness and vegetation) variables was indicated by both models of regression analyses. The different effect of each spatial and environmental predictor on the distribution of geometrid moths on the Korean peninsula is discussed. The significant relationship between estimated species richness and latitude indicate a peninsular effect on geometrid moths in South Korea.
The aim of the present study was to find groups of moths suitable for estimating changes in the abundance and richness of local and regional biodiversity in a temperate forest. We captured macro-moths from May to October over a 5-year period (2005–2009) at various sites in Mt. Jirisan National Park (JNP) in southern Korea. Six taxa were selected based on a strong correlation between the number of species in these taxa and total number of species of large moths: Ennominae (Enn), Arctiinae (Arc), Hermininae (Her), Notodontidae (Not), Drepanidae (Dre) and Ophiderinae (Oph). Of these, combinations of four groups were found to have the best predictive capability. We determined whether these indicator groups could be used to reveal mean differences in species abundance according to spatial (forest type, altitude) and temporal variables (monsoon season) since moth composition and abundances were closely related with these variables. The mean differences in the groups of moths in the two types of forest (Arc, Dre, Enn, Not), two altitudes (Dre, Enn, Her, Oph) and two seasons (Dre, Enn, Oph) were significant. Overall, it was revealed that a set of four groups, including two taxa (Dre and Enn), could be used to show differences in local and regional biodiversity of moths in southern Korean temperate forest., Jeong-Seop An, Sei-Woon Choi., and Obsahuje seznam literatury