Existence of piedmont zone in a river bed is a critical parameter from among numerous variations of topographical, geological and geographical conditions that can significantly influence the river flow scenario. Downstream flow situation assessed by routing of upstream hydrograph may yield higher flow depth if existence of such high infiltration zone is ignored and therefore it is a matter of concern for water resources planning and flood management. This work proposes a novel modified hydrodynamic model that has the potential to accurately determine the flow scenario in presence of piedmont zone. The model has been developed using unsteady free surface flow equations, coupled with Green-Ampt infiltration equation as governing equation. For solution of the governing equations Beam and Warming implicit finite difference scheme has been used. The proposed model was first validated from the field data of Trout Creek River showing excellent agreement. The validated model was then applied to a hypothetical river reach commensurate with the size of major tributaries of Brahmaputra Basin of India. Results indicated a 10% and 14% difference in the maximum value of discharge and depth hydrograph in presence and absence of piedmont zone respectively. Overall this model was successfully used to accurately predict the effect of piedmont zone on the unsteady flow in a river.
This article deals with numerical modelling of contaminant transport in a locality near Bzenec. From the 1970s to the 1990s, this locality was subjected to groundwater contamination by chlorohydrocarbons (PCE, TCE, DCE). The locality is known for its drinking water supplies, which serve for over 100 000 people. Since 1992 remediation of the locality has been in progress, with several breaks due to funding problems. Numerical modelling was used as a method for assessing the efficiency of remediation and for predicting the contaminant transport until the end of 2006. In order to model contaminant transport, a 3D groundwater flow model was first created, calibrated and verified in steady state. Then the transport model was built to simulate contaminant transport. The modelling of contaminant transport was solved by using several scenarios where the input values for the dispersion, sorption and decay parameters were verified using measured values of contaminant concentration in the region of interest. and Článek se zabývá numerickým modelováním šíření znečištění v blízkosti Bzence. V průběhu 70. až 90. let minulého století došlo v této lokalitě ke kontaminaci podzemní vody chlorovanými uhlovodíky (PCE, TCE, DCE). Tato lokalita je významným zdrojem pitné vody pro více než 100 000 obyvatel. Od roku 1992 probíhájí v lokalitě sanační práce, které byly z finančních důvodů několikrát přerušeny. Pro ověření účinnosti sanačních prací a pro predikci šíření znečištění do konce roku 2006 byla využita metoda numerického modelování. Aby bylo možné simulovat proces šíření znečištění, byl nejprve sestaven, zkalibrován a verifikován třírozměrný model proudění podzemní vody pro ustálený stav. Potom byl vytvořen transportní model. Transport kontaminantu byl modelován v několika scénářích, lišících se hodnotami parametrů disperze, sorpce a rozpadové konstanty. Hodnoty těchto parametrů byly verifikovány pomocí měřených koncentrací znečišťujících látek v oblasti.
Method of groundwater flow velocity determination in sand and gravel aquifer of Danube river is described in the paper. The solution in which seasonal changes of ground and river water temperatures are used is original. It gives good opportunity for solution of different hydrogeological and water management problems. The method application is demonstrated on the example of Sihoť well field in Bratislava Karlova Ves. Results were used in design ground water zones protection. and V príspevku je opísaná metóda určovania rýchlosti prúdenia podzemnej vody v náplavoch rieky Dunaj. Metodický postup, pri ktorom sú využité sezónne zmeny teploty podzemnej a povrchovej vody, je pôvodný a dáva pomerne veľké možnosti uplatnenia v hydrogeológii a vo vodárenstve. V príspevku je opísané využitie metódy v konkrétnych prírodnych podmienkach zdroja pitnej vody na ostrove Sihoť v Bratislave-Karlovej Vsi. Takto zídkané výsledky boli použité pri navrhovaní pásiem hygienickej ochrany zdroja.
When investigating contaminant transport in groundwater aquifers, it is important to take into account the aqueous-phase density. In order to get the required information, the knowledge of functional relationship between the contaminant concentration and the aqueous-phase density is necessary. In this paper, the relationship was found for ten solutes commonly occurring in groundwater, namely CaCl2, KCl, K2CO3, K2SO4, KHSO4, Na2CO3, NaCl, Na2SO4, MgSO4 and MgCl2. Linear, parabolic and power functions have been applied and several quantities (mass fraction, molality, molarity, molar fraction, ionic strength and mass-volume concentration) have been considered in order to get the best accuracy of the obtained relationship. Finally, the problem of multicomponent solutions was solved. A new method of density determination was developed which makes use of known single-component relationships. The method was tested and its efficiency was verified and documented. and Při řešení problémů transportu kontaminantů v prostředí podzemní vody je důležité vzít v úvahu hustotu proudící fáze. K její znalosti je nezbytně nutná znalost závislosti hustoty fáze na koncentraci kontaminantu. Článek přináší potřebné funkční závislosti získané pro deset různých látek běžně se vyskytujících v prostředí podzemní vody, konkrétně pro CaCl2, KCl, K2CO3, K2SO4, KHSO4, Na2CO3, NaCl, Na2SO4, MgSO4 a MgCl2. Tři funkce, lineární, kvadratická a mocninná byly použity v kombinaci s různými veličinami (hmotnostní zlomek, molalita, molarita, molární zlomek, iontová síla a koncentrace) při hledání nejpřesnější formy výsledného vztahu. Problém byl následně řešen pro vícesložkové roztoky. Byla nalezena nová metoda využívající znalosti jednosložkových závislostí. Přesnost této metody byla v článku ověřena a dokumentována.
This paper deals with assessment of groundwater inflow from a military area (''transboundary inflow'') to the Hron River in March-April 2003. Transboundary groundwater inflow is defined as groundwater amount, which in existing piezometric conditions flows through specific intersection of aquifer, in this case it means delimitation of the model area. The area of interest - Sliač-airport - is situated in the Zvolenská kotlina basin about 5 kilometers north from Zvolen, near the right bank of the Hron River (Hron alluvium). and Príspevok sa zaoberá podielom prítoku podzemných vôd z vojenských objektov do rieky Hron v období marec-apríl 2003. Prítok podzemnej vody cez hranicu vojenského objektu (''cezhraničný'') je definovaný ako množstvo podzemnej vody, ktoré v daných piezometrických podmienkach preteká určitým prierezom zvodnenca, v tomto prípade ide o vymedzenie modelovaného územia. Záujmové územie Sliač-letisko sa nachádza v oblasti Zvolenskej kotliny približne 5 km severne od Zvolena, v blízkosti pravého brehu rieky Hron, v jej aluviálnych náplavoch.