Dlouhou dobu se předpokládalo, že populace obývající určitá území Evropy také tato území na konci doby ledové kolonizovaly jako první. Nové výzkumy však ukázaly, že v některých případech byla první příchozí populace později nahrazena jinou, pocházející z jiného glaciálního refugia. Náš článek ukazuje, že k takovému nahrazení jedné populace druhou došlo při kolonizaci Velké Británie norníkem rudým (Clethrionomys glareolus) a že při tom hrály roli fyziologické adaptace způsobené mutací v hemoglobinu., It has long been assumed that the populations that first colonized particular empty territory after the last ice age have remained there until the present day. However, recent findings in small mammals suggest that replacements involving a population from one glacial refugium at the cost of a population from another refugium may have been a not infrequent event. The article demonstrates that such population replacement took place during post-glacial colonization of Great Britain by the Bank Vole (Clethrionomys glareolus) and that physiological differences conferred by haemoglobin have probably played a role in this process., and Petr Kotlík, Silvia Marková, Karolína Filipi, Michaela Strážnická, Jeremy B. Searle.
Horizontální přenos genů a genové inženýrství vyústily v celou řadu případů, kdy došlo k překročení hranic oddělujících lidský genom od genomů jiných organismů. Horizontální přenos genů je ryze přírodní proces, který nedokážeme potlačit. Genové inženýrství je vys- oce prospěšná lidská aktivita, jíž se nemůžeme vzdát. Navíc se ukazuje, že naši předci „pošpinili“ náš genom sekvencemi několika vymřelých druhů člověka. Je proto nezbytné přijmout jako fakt, že hranice lidského genomu nejsou jasně vytyčené a že v budoucnu budou jeho obrysy ještě nejasnější., The horizontal gene transfer and genetic engineering resulted in many crossings of the boundary dividing the human genome from the genomes of other organisms. The horizontal gene transfer is a natural process and cannot be stopped. The genetic engineering is a highly beneficial human activity and we cannot abandon it. Moreover, our ancestors “spilled” our genome with sequences of DNA from seve- ral extinct human species. It is necessary to accept that the border of the human genome is not sharply delineated. In the future, the contours of our genome could become even much fuzzier., Jaroslav Petr, and Literatura
The Sympetrum vulgatum (Linnaeus, 1758) complex is composed of the subspecies S. vulgatum vulgatum, S. vulgatum decoloratum (Selys, 1884) and S. vulgatum ibericum Ocharan, 1985 in the West Palaearctic. These taxa have parapatric distributions and noticeable morphological differences in colour and body size, and their taxonomic status is debated. Here we revise the systematics of this group using molecular taxonomy, including molecular analyses of mitochondrial (cytochrome c oxidase subunit I, COI) and nuclear (internal transcribed spacer, ITS1) DNA taking into account known morphological differences. Each subspecies has a unique and differentiated COI haplotype, although divergences among them are low (0.4% maximum uncorrected p-distance). The subspecies are not differentiated by the nuclear marker ITS1. The genetic results for these taxa contrast with the deep divergence of the sister species S. striolatum (Charpentier, 1840). Given current evidence, we propose to maintain the subspecific status of the S. vulgatum complex and hypothesize their biogeographical history. It is likely that the three subspecies became isolated during one of the latest glacial periods, each in a different refugium: S. vulgatum ibericum possibly occupied the Iberian Peninsula, S. vulgatum vulgatum the Balkan Peninsula or territories further east and S. vulgatum decoloratum Anatolia., Joan C. Hinojosa, Ricard Martín, Xavier Maynou, Roger Vila., and Obsahuje bibliografii
We report results of a faunal survey of Aradidae flat bugs sampled by sifting litter in 14 wet and discrete Tanzanian primary forests (= Tanzanian Forest Archipelago, TFA) of different geological origins and ages. Images, locality data and, when available, DNA barcoding sequences of 300 Aradidae adults and nymphs forming the core of the herein analyzed data are publicly available online at dx.doi.org/10.5883/DS-ARADTZ. Three Aradidae subfamilies and seven genera were recorded: Aneurinae (Paraneurus), Carventinae (Dundocoris) and Mezirinae (Afropictinus, Embuana, Linnavuoriessa, Neochelonoderus, Usumbaraia); the two latter subfamilies were also represented by specimens not assignable to nominal genera. Barring the six nominal species of Neochelonoderus and Afropictinus described earlier by us from these samples and representing 11 of the herein defined Operational Taxonomic Units (OTU), only one of the remaining 52 OTUs could be assigned to a named species; the remaining 51 OTUs (81%) represent unnamed species. Average diversity of Aradidae is 4.64 species per locality; diversity on the three geologically young volcanoes (Mts Hanang, Meru, Kilimanjaro) is significantly lower (1.33) than on the nine Eastern Arc Mountains (5.67) and in two lowland forests (5). Observed phylogeographic structure of Aradidae in TFA can be attributed to vicariance, while the depauperate fauna of Aradidae on geologically young Tanzanian volcanoes was likely formed anew by colonisation from nearby and geologically older forests., Vasily V. Grebennikov, Ernst Heiss., and Obsahuje bibliografii