Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectomized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D1 receptors and in other part by inhibition of stimulatory action of DA through D2 receptors., C. M. Leite, G. J. R. Machado, R. C. M. Dornelles, C. R. Franci., and Obsahuje bibliografii a bibliografické poznámky
The use of the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride; PQ) which is widely used in agriculture is known to cause dopaminergic neurotoxicity. However, the mechanisms underlying this effect are not fully understood. This present study investigated the behavioral manifestations, motor coordination, and dopaminergic neurodegeneration following exposure to PQ. Male rats were injected with PQ (10 mg/kg i.p.) daily for three weeks. Rotarod systems were used for measuring locomotor activity and motor coordination. The effects of PQ on dorsiflexor, electrophysiologically-induced muscle contraction were studied. Dopamine concentrations in the ventral mesencephalon were measured by high performance liquid chromatography and the number of dopaminergic neurons in substantia nigra pars compacta was estimated by tyrosine hydroxylase immunohistochemistry. PQ induced difficulty in movement and significant reduction in motor activity and twitch tension at the dorsiflexor skeletal muscle. The number of tyrosine hydroxylase positive neurons was significantly less in the substantia nigra pars compacta and nigral dopamine level was significantly reduced in PQ treated animals (20.4±3.4 pg/mg) when compared with control animals (55.0±2.4 pg/mg wet tissue). Daily treatment of PQ for three weeks induces selective dopaminergic neuronal loss in the substantia nigra and significant behavioral and peripheral motor deficit effects., M. A. Fahim, ... [et al.]., and Obsahuje seznam literatury
The cabbage armyworm, Mamestra brassicae, enters diapause in the early pupal stage. Pupal diapause is induced by rearing the larvae under short day lengths. We previously demonstrated that feeding Dopa during last larval instar induces pupal diapause even under long day lengths. In order to elucidate the mechanism by which pupal diapause is induced after experiencing short day lengths or fed Dopa under long day lengths, we analyzed gene expression in the brain of M. brassicae larvae under both of these conditions using a subtractive hybridization technique. After the secondary screen, 49 clones and 28 clones were identified as short day length or Dopa-feeding specific clones, respectively. All of these genes were sequenced and, using the base sequences of these clones, primers were synthesized. To confirm the genes enhanced specifically by these conditions, quantitative real-time PCR was carried out. This quantitative PCR analysis identified 15 and 1 clone whose expression was enhanced by the short day length conditions or Dopa-feeding, respectively. Among these clones, the gene with a high level of identity to receptor for activated protein kinase C (RACK) from Heliothis virescens is the most dramatically up-regulated under both conditions.
The negative affective state of opiate abstinence plays an important role in craving and relapse to compulsive drug use. The dopamine system participates in the reward effects of opiate use and the aversive effect of opiate abstinence. The amygdala is an essential neural substrate for associative learning of emotion. To establish a model of conditioned place aversion (CPA) in morphine-treated rats, we used different visual and tactual cues as conditioned stimuli (CS) within a conditioning apparatus. An injection of naloxone served as the unconditioned stimulus (US). The 6-hydroxydopamine (6-OHDA) lesion technique was used to investigate the effects of the dopaminergic system of the central nucleus of the amygdala (CeA) on naloxone-induced CPA. Rats were rendered physically dependent via administration of increasing doses of morphine delivered via intraperitoneal injection. Doses increased by 20 % each day for 14 days, starting from an initial dose of 6 mg/kg. All rats also received a low dose of naloxone (0.1 mg/kg) by injection 4 hours after morphine treatment on days 11 and 13 to induce CPA in a biased twocompartment conditioned place apparatus. Morphine-dependent rats with sham lesions were found to develop significant CPA after naloxone treatment. Bilateral 6-OHDA lesions of the CeA impaired the acquisition of CPA but had no effect on locomotor activity. These results suggest that the dopaminergic system of the CeA plays an important role in the negative affective state of opiate abstinence., W. Xu ... [et al.]., and Obsahuje seznam literatury
The behavioural manipulation hypothesis posits that parasites can change the behaviour of hosts to increase the reproductive fitness of the parasite. The protozoan parasite Toxoplasma gondii fits this description well. Sexual reproduction occurs in the cat intestine, from which highly stable oocysts are excreted in faeces. Grazing animals, including rodents, can then ingest these oocysts. The parasite has evolved the capacity to abolish the innate fear that rodents have of the odours of cats, and to convert that fear into an attraction. This presumably increases the likelihood of the rodent being predated, thereby completing the parasite's life cycle. The behavioural syndrome produced by T. gondii does not have any precedent in neuroscience research. This is not a case where the normal functioning of fear system have been altered. This is not even the case of the altering of fear towards predator odours, while leaving other kinds of fear intact. This is an unprecedented example of one component of the fear being eliminated (and replaced by a novel attraction), while appearing to leave other domains unchanged. An understanding of the neurobiological effects of T. gondii is beginning to emerge. One possibility is T. gondii's preferential localisation to, and effects within the amygdala; this is particularly intriguing, given the role of this brain structure in the normal fear response. Obviously, far more must be understood, and the unique behavioural effects of T. gondii put very demanding constraints on any hypothesis we formulate to explain proximate neurobiological mechanisms.
It is unknown whether the longer duration of vibration training (VT) has a beneficial effect on Parkinson's disease (PD). And also, the mechanisms underlying the reported sensorimotorimprovement in PD induced by short-duration of VT has not been determined. Here, we investigated the effects of longer duration (4 weeks) of low amplitude vibration (LAV) training on the numbers of dopaminergic neurons in the substantia nigra by immunostaining and the levels of dopamine (DA) and brainderived neurotrophic factor (BDNF) in the striatum by HPLC and ELISA in the chronic MPTP lesion mouse. We demonstrated for the first time that the longer duration of VT could significantly increase the numbers of nigrostriatal DA neurons and the contents of striatal DA and BDNF in the MPTP mice. Our findings implied that longer duration of VT could protect dopaminergic neurons from the MPTP-induced damage probably by upregulating BDNF and also provided evidence for the beneficial effect of longer duration of VT on PD at the cellular and molecular level., L. Zhao, L. X. He, S. N. Huang, L. J. Gong, L. Li, Y. Y. Lv, Z. M. Qian., and Obsahuje bibliografii
A convincing body of evidence now exists, from both human and animal studies, and encompassing epidemiological to experimental, to indicate that the common protozoan Toxoplasma gondii can cause specific behavioural changes in its host. Such behavioural alterations are likely to be the product of strong selective pressures for the parasite to enhance transmission from its intermediate host reservoir, primarily rodent, to its feline definitive host, wherein sexual reproduction can occur and the parasite's life cycle completed. Here we consider what the available data to date may reveal about the potential mechanisms involved, the future research that needs to be performed, and the subsequent implications for animal and human health.