To predict more precisely the effect of stobadine, a pyridoindole antioxidant agent, in the whole organism, we studied its effect on opsonized zymosan-stimulated free radical generation in whole blood, on superoxide generation in the mixture of PMNL : platelets (1:50), as well as on superoxide generation and myeloperoxidase release in isolated PMNL. Without stimulation, stobadine had no effect on reactive oxygen species (ROS) generation and myeloperoxidase release. Stobadine in a concentration of 10 or 100 µmol/l significantly decreased luminol-enhanced chemiluminescence in opsonized zymosan-stimulated whole blood. In concentrations of 10 and 100 µmol/l, it reduced myeloperoxidase release from isolated neutrophils. Stobadine significantly decreased superoxide generation in isolated neutrophils in 100 µmol/l concentration. Its effect was much less pronounced in the mixture of neutrophils and platelets in the ratio close to physiological conditions (1:50). Our results suggest that stobadine might exert a beneficial effect in diseases or states where superfluous ROS generation could be deleterious.
Phagocyte released reactive oxygen species are often discussed in connection with ischemic and reperfusion injuries to the myocardium. The kinetics of the accumulation and oxidative burst of human blood phagocytes was studied by chemiluminescence during open heart surgery in the myocardium of human patients. Direct evidence is presented for an accumulation of neutrophils along with their markedly increased metabolic activity (oxygen radical formation), especially following the reperfusion of the ischemic myocardium. Leukocyte numbers and activity remained significantly elevated even in the venous blood obtained 24 h after the operation.
Cytokines play a major role in the control of inflammatory responses, participate in the regulation of blood phagocyte activities and as such are used for immunomodulatory therapy. In the present study, the influence of IL-10 on human blood phagocyte activity in the presence/absence of IL-6, IL-8 and TNF-a was tested in vitro. Our research analyzed the effects of cytokines on the production of reactive oxygen species measured by chemiluminescence and flow cytometry, and on the expression of surface molecules (CD11b, CD15, CD62L, CD31) measured by flow cytometry. IL-10 had no inhibitory effect on reactive oxygen species production and the expression of any examined adhesion molecule by resting or stimulated blood phagocytes within 3 h of incubation. Conversely, TNF-, IL-6, and IL-8 increased reactive oxygen species production and the expression of CD11b and CD15 on both neutrophils and monocytes and decreased the expression of CD62L. These priming effects of the tested pro-inflammatory cytokines were not affected by IL-10. The obtained results suggest that IL-10 does not directly control blood phagocyte activation. These results also provide better information about the contribution of IL-6, IL-8 and TNF- to the regulation of blood phagocyte-mediated inflammatory processes.
The purpose of this study was to follow up the changes in antioxidative adaptive mechanisms induced by various periods of small intestinal ischemia in Wistar rats. The superior mesenteric artery was occluded for 15, 30, 45, 60 and 90 min. After the respective ischemic intervals, a reperfusion was set for 120 min. Samples of the serum and intestinal mucosa were taken at the end of ischemia or at the end of reperfusion. Total radical-trapping antioxidant parameter (TRAP) of the serum and the oxidative burst of neutrophils were evaluated using luminol-enhanced chemiluminescence. Individual antioxidants in the serum and the concentration of thiobarbituric acid reactive substances (TBARs) in both serum and intestinal mucosa were measured spectrophotometrically. Increased activation of circulating neutrophils was found after the reperfusion irrespective of the duration of ischemia. TRAP of the serum was increased at the end of the ischemia lasting from 30 to 90 min. This effect was further enhanced by the subsequent reperfusion period. Ascorbate and urate contributed considerably to the TRAP value especially after reperfusion following 60 and 90 min of ischemia. On the other hand, no significant changes in albumin and bilirubin serum concentrations were observed. Contrary to the mobilized antioxidative mechanisms, increased lipid peroxidation was observed in both serum and mucosa samples.