Mechanisms of the suppression of gonadotropic activity of the corpus allatum (CA) in macropterous females were compared with those previously reported for either diapause or starving non-diapause brachypterous females by reciprocal transplantations of the neuroendocrine complexes (comprising the brain-suboesophageal ganglion-corpora cardiaca-CA). The denervated CA stimulated reproduction in most females of all experimental groups suggesting an inhibition of the CA via nervous connections with the brain. The inhibition of the CA within the transplanted neuroendocrine complex was measured by the reproductive performance of feeding recipient females deprived of their own CA. The complex from starving non-diapause brachypterous females stimulated reproduction in 58.3-78.9% of recipients suggesting that the inhibition of the CA was mostly overcome by the stimulating internal milieu of feeding females. In contrast, the "macropterous" complex stimulated reproduction in only 18.8-37.5% of recipients, similar to the "diapause brachypterous" complex (32.0%). The results indicate that the "macropterism", similar to the diapause, is associated with a considerably lower responsiveness of the neuroendocrine complex to humoral stimulation by feeding compared to the responsivenes of the "starving" complex from brachypterous non-diapause females. On the other hand, the CA of macropterous females is of intermediate size between that of the feeding non-diapause and diapause brachypterous females, similar to the CA of the non-diapause brachypterous females deprived of food. Overall, the data suggest that the suppression of the CA activity results from a combination of the diapause-like refractoriness of the neuroendocrine complex with the starvation-like inhibition of the CA growth. Regulation of the CA activity is discussed in relation to the "oogenesis-flight syndrome" recorded for flying wing-polymorphic species of insects.
This review considers factors affecting the flight capacity of carabid beetles and the implications of flight for carabids. Studies from the Dutch polders in particular show that young populations of carabids consist predominantly of macropterous species and macropterous individuals of wing-dimorphic species. Also populations of wing-dimorphic carabid species at the periphery of their geographical range contain high proportions of macropterous individuals. However, studies from Baltic archipelagos show that older populations of even highly isolated island habitats contain considerable proportions of brachypterous species and individuals. This suggests that macroptery is primarily an adaptation for dispersal and that there exists a mechanism for subsequently reducing the ratio of macropterous to brachypterous species under stable conditions, due to the competitive advantage of brachyptery. Populations in isolated habitats, such as islands and mountains, have high proportions of brachypterous species. Many macropterous species do not possess functional flight muscles. Species of unstable habitats, such as tree canopies and wet habitats, are mostly macropterous. Brachypterous species tend to disappear from disturbed habitats. There is uncertainty regarding the extent to which carabid dispersal is directed and how much passive. Both Den Boer and Lindroth recognized that mostly macropterous individuals of macropterous and wing-dimorphic species disperse and found new populations, after which brachyptery tends to rapidly appear and proliferate in the newly founded population. It is most likely that the allele for brachyptery would arrive via the dispersal of gravid females which had mated with brachypterous males prior to emigration. Whilst many studies consider wing morphology traits of carabid beetles to be species-specific and permanent, a number of studies have shown that the oogenesis flight syndrome, whereby females undertake migration and subsequently lose their flight muscles by histolysis before eventually regenerating them after reproducing, has been reported for a growing number of carabid species. Wing morphology of carabid beetles clearly offers strong potential for the study of population dynamics. This field of study flourished during the 1940's to the late 1980's. Whilst a considerable amount of valuable research has been performed and published, the topic clearly holds considerable potential for future study., Stephen Venn., and Obsahuje bibliografii