This article describes the data processing obtained by the AFM using the programming language and software Matlab. The basic examples are scripts for two-dimensional and three-dimensional surface structure, histogram of heights and S parameters. However, these examples can be applied to other SPM methods. The benefits of such usage over the original software from microscope are almost unlimited possibilities of processing with the data obtained. and Článek popisuje zpracování dat pořízených metodou AFM za využití programovacího jazyka a nástroje Matlab. Jako základní příklady jsou uvedeny kódy pro dvoj a trojrozměrné zobrazení struktury povrchu, histogramu výšek a S parametrů. Uvedené příklady však lze aplikovat i na jiné SPM metody. Výhodou takového zpracování oproti softwaru dodaného k mikroskopu pak je naprostá volnost práce se získanými daty.
Inland waters are known to be laden with high levels of suspended particulate matter (SPM). Remotely sensed data have been shown to provide a true synoptic view of SPM over vast areas. However, as to date, there is no universal technique that would be capable of retrieving SPM concentrations without a complete reliance on time-consuming and costly ground measurements or a priori knowledge of inherent optical properties of water-borne constituents. The goal of this paper is to present a novel approach making use of the synergy found between the reflectance in the visual domain (~ 400-700 nm) with the near-infrared portion of the spectrum (~ 700-900 nm). The paper begins with a brief discourse of how the shape and spectral dependence of reflectance is determined by high concentrations of SPM. A modeled example is presented to mimic real-world conditions in fluvial systems, with specific absorption and scattering coefficients of the virtual optically active constituents taken from the literature. Using an optical model, we show that in the visual spectral domain (~ 400-700 nm) the water-leaving radiance responds to increasing SPM (0-100 g m-3) in a non-linear manner. Contrarily to the visual spectra, reflectance in the near infrared domain (~ 700-900 nm) appears to be almost linearly related to a broad range of SPM concentrations. To reduce the number of parameters, the reflectance function (optical model) was approximated with a previously experimentally verified exponential equation (Schiebe et al., 1992: Remote sensing of suspended sediments: the Lake Chicot, Arkansas project, Int. J. Remote Sensing, 13, 8, 1487-1509). The SPM term in Schiebe’s equation was expressed as a linear function of top-of-atmosphere reflectance. This made it possible to calibrate the reflectance in the visual domain by reflectance values from the near-IR portion of the spectrum. The possibility to retrieve SPM concentrations from only remote sensing data without any auxiliary ground mea-surements is tested on a Landsat ETM + scene acquired over a reservoir with moderately turbid water with SPM concentrations between 15-70 g m-3. The retrieved concentrations (on average) differ from in-situ measurement by ~ 10.5 g m-3. and Cieľom príspevku je prezentovať alternatívne spracovanie satelitných snímok na odhad koncentrácie suspendovaných sedimentov vo vodných útvaroch. Prvá časť článku sa venuje teórii a fyzikálnej podstate reflektancie a vplyvu prirodzene sa vyskytujúcich opticky aktívnych prvkov vo vode (suspendované sedimenty, pigmenty a rozpustené látky) na reflektanciu snímanú prostriedkami diaľkového prieskumu Zeme. Na modelovom príklade sme ukázali, že so zvyšovaním koncentrácie suspendovaných látok dochádza k saturácii signálu reflektancie.V druhej časti príspevku sme opísali spôsob využitia nelineárnosti vzťahu medzi reflektanciu vo viditeľnej časti (~ 400-700), a kvázi-linearitov v infračervenej časti (~ 700-900 nm) elektromegnetického spektra a koncentrácie suspendovaných sedimentov. Optimalizáciou tohto nelineárneho vzťahu sme odhadli koncentrácie suspendovaných sedimentov pre zdrž Hrušov pri Bratislave s RMSE 10.5 g m-3.