During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha–1, nitrogen 0 kg ha–1); B10 (biochar 10 t ha–1, nitrogen 0 kg ha–1); B20 (biochar 20 t ha–1, nitrogen 0 kg ha–1); B10+N (biochar 10 t ha–1, nitrogen 160 kg ha–1) and B20+N (biochar 20 t ha–1, nitrogen 160 kg ha–1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.
Employing evapotranspiration models is a widely used method to estimate reference evapotranspiration (ETREF) based on weather data. Evaluating such models considering site-specific boundary conditions is recommended to interpret ETREF-calculations in a realistic and substantiated manner. Therefore, we evaluated the ASCE standardized ETREF-equations at a subhumid site in northeastern Austria. We calculated ETREF-values for hourly and daily time steps, whereof the former were processed to sum-of-hourly values. The obtained data were compared to each other and to ETvalues measured by a weighing lysimeter under reference conditions. The resulting datasets covered daily data of the years 2004 to 2011. Sum-of-hourly values correlated well (r2 = 0.978) with daily values, but an RMSE of 0.27 mm specified the differences between the calculation procedures. Comparing the calculations to lysimeter measurements revealed overestimation of small ETREF-values and underestimation of large values. The sum-of-hourly values outperformed the daily values, as r2 of the former was slightly larger and RMSE was slightly smaller. Hence, sum-of-hourly computations delivered the best estimation of ETREF for a single day. Seasonal effects were obvious, with computations and measurements being closest to each other in the summer months.
Inland waters are known to be laden with high levels of suspended particulate matter (SPM). Remotely sensed data have been shown to provide a true synoptic view of SPM over vast areas. However, as to date, there is no universal technique that would be capable of retrieving SPM concentrations without a complete reliance on time-consuming and costly ground measurements or a priori knowledge of inherent optical properties of water-borne constituents. The goal of this paper is to present a novel approach making use of the synergy found between the reflectance in the visual domain (~ 400-700 nm) with the near-infrared portion of the spectrum (~ 700-900 nm). The paper begins with a brief discourse of how the shape and spectral dependence of reflectance is determined by high concentrations of SPM. A modeled example is presented to mimic real-world conditions in fluvial systems, with specific absorption and scattering coefficients of the virtual optically active constituents taken from the literature. Using an optical model, we show that in the visual spectral domain (~ 400-700 nm) the water-leaving radiance responds to increasing SPM (0-100 g m-3) in a non-linear manner. Contrarily to the visual spectra, reflectance in the near infrared domain (~ 700-900 nm) appears to be almost linearly related to a broad range of SPM concentrations. To reduce the number of parameters, the reflectance function (optical model) was approximated with a previously experimentally verified exponential equation (Schiebe et al., 1992: Remote sensing of suspended sediments: the Lake Chicot, Arkansas project, Int. J. Remote Sensing, 13, 8, 1487-1509). The SPM term in Schiebe’s equation was expressed as a linear function of top-of-atmosphere reflectance. This made it possible to calibrate the reflectance in the visual domain by reflectance values from the near-IR portion of the spectrum. The possibility to retrieve SPM concentrations from only remote sensing data without any auxiliary ground mea-surements is tested on a Landsat ETM + scene acquired over a reservoir with moderately turbid water with SPM concentrations between 15-70 g m-3. The retrieved concentrations (on average) differ from in-situ measurement by ~ 10.5 g m-3. and Cieľom príspevku je prezentovať alternatívne spracovanie satelitných snímok na odhad koncentrácie suspendovaných sedimentov vo vodných útvaroch. Prvá časť článku sa venuje teórii a fyzikálnej podstate reflektancie a vplyvu prirodzene sa vyskytujúcich opticky aktívnych prvkov vo vode (suspendované sedimenty, pigmenty a rozpustené látky) na reflektanciu snímanú prostriedkami diaľkového prieskumu Zeme. Na modelovom príklade sme ukázali, že so zvyšovaním koncentrácie suspendovaných látok dochádza k saturácii signálu reflektancie.V druhej časti príspevku sme opísali spôsob využitia nelineárnosti vzťahu medzi reflektanciu vo viditeľnej časti (~ 400-700), a kvázi-linearitov v infračervenej časti (~ 700-900 nm) elektromegnetického spektra a koncentrácie suspendovaných sedimentov. Optimalizáciou tohto nelineárneho vzťahu sme odhadli koncentrácie suspendovaných sedimentov pre zdrž Hrušov pri Bratislave s RMSE 10.5 g m-3.