In order to enhance the mass production of the house fly, Musca domestica, five aspects of its oviposition biology were analyzed. Oviposition substrate and the manner of its presentation, the composition of the diet of the adults, size of the pupae and numbers of flies in a cage were identified as critical. Females preferred to lay eggs on a substrate which was presented within a shelter and with increased linear edges against which the flies could oviposit. Different types of oviposition substrate resulted in comparable yields of eggs. The presence of an oviposition attractant (ammonia) in the manure was found to have a potentially positive effect on female fecundity. Egg yield increased when two protein sources (yeast and milk) were included in the adult diet. However, flies fed a mixture of sugar and yeast laid over 50% fewer eggs than those fed the same proportion of sugar and milk. The fecundity of flies decreased with increase in the number of flies per cage, but the highest total number of eggs per cage was obtained when the flies were most crowded (14.2 cm3 per fly). The size of the pupae did not significantly affect egg production. and Berta Pastor, Helena Čičková, Milan Kozánek, Anabel Martínez-Sánchez, Peter Takáč, Santos Rojo.
Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) is sold commercially as a biocontrol agent of filth flies, including the house fly, Musca domestica L. (Diptera: Muscidae). For this reason, S. cameroni is mass-reared for inundative releases to control harmful flies. However, the mass-rearing protocols include very little information on the influence of natal host on subsequent host selection by parasitoids with more than one potential host as in the genus Spalangia. Here, we report on the use of S. cameroni against M. domestica. The S. cameroni were reared using Ceratitis capitata Wiedemann (Diptera: Tephritidae) (natal host) pupae for several generations. Freeze-killed fly pupae were used in assays to determine the fecundity, number of adult progeny and sex-ratio of this parasitoid. Realized fecundity and number of adult progeny were greater when provided with house fly pupae than Mediterranean fruit fly pupae. Thus S. cameroni parasitized more house fly pupae than C. capitata pupae, even though the parasitoid was reared on Mediterranean fruit fly for many generations. These results indicate that S. cameroni reared on C. capitata can be successfully used in inundative releases against both fruit flies (agriculture) and house flies (livestock farming)., Francisco Beitia, Erik Valencia, Bernat Peris, Luis De Pedro, Josep D. Asís, José Tormos., and Obsahuje bibliografii
We studied the predation behaviour of the "hunter fly" (Coenosia attenuata Stein) in the laboratory and greenhouse. In the laboratory, which was conducted at 25°C at 60-80% RH, with a 16L : 8D photoperiod, we examined the functional response of this species to three different pests, namely the sciarid fly (Bradysia sp.), the tobacco whitefly (Bemisia tabaci) and the leaf miner Liriomyza trifolii. In the greenhouse, we studied the population dynamics of the predator and its prey on pepper and water melon crops grown in southern Spain. Adult hunter flies were found to exhibit a type I functional response to adult sciarid flies and whiteflies, but a type II response to adult leaf miners. The type II response was a result of the greater difficulty in capturing and handling leaf miners compared to the other two species. The dynamics of the predator-prey interaction in the greenhouse revealed that the predator specializes mainly on adult sciarids and that the presence of the other prey can be supplemental, but is never essential for survival of the predator; this, however, is crop-dependent. The results on the dynamics of the predator-prey systems were obtained through a known population dynamics model with modifications.