The suitability of Liriomyza sativae Blanchard, L. trifolii (Burgess) and L. bryoniae (Kaltenbach) as hosts of the solitary larval-pupal parasitoid Dacnusa sibirica Telenga was studied. This parasitoid is used as a biological control agent against L. trifolii and L. bryoniae. The parasitoid laid eggs in L. sativae, but no adult parasitoids emerged from the puparia. In contrast, D. sibirica adults emerged from the puparia of L. trifolii and L. bryoniae, and there was no significant difference in emergence rate, female developmental time, or sex ratio when parasitizing these two host species. The parasitoid adults that emerged from the L. bryoniae puparia were significantly larger than those from L. trifolii puparia. In conclusion, D. sibirica, a useful biological control agent of L. trifolii and L. bryoniae, cannot control L. sativae.
The developmental time and size of a solitary koinobiont parasitoid, Gronotoma micromorpha (Perkins) (Hymenoptera: Eucoilidae), were measured in two host species: the serpentine leafminer, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) and tomato leafminer, L. bryoniae (Kaltenbach). There was no significant difference in the developmental time of G. micromorpha in these two hosts. However, significantly larger G. micromorpha adults emerged from L. bryoniae than from L. trifolii puparia. Dissection of larvae revealed that when offered a choice G. micromorpha accepted larvae of L. bryoniae more often than those of L. trifolii. The number of wasps emerging from parasitized hosts did not differ significantly between host species. These results indicate that L. trifolii and L. bryoniae are both acceptable and suitable hosts for G. micromorpha. Gronotoma micromorpha may be a useful biological control agent of both L. trifolii and L. bryoniae.
The univoltine leaf miner Chromatomyia fuscula Zetterstedt is a Scandinavian cereal pest. We wanted to compare the phenology of C. fuscula in southern Norway with that of its most important natural enemies: 15 parasitoids of the families Eulophidae and Pteromalidae (Hymenoptera: Chalcidoidea). The use of two Malaise traps in an organically-grown spring barley field and its boundary through 6 seasons (1992-1997) also allowed us to compare these two habitats and to observe the effect of harvesting on the parasitoid activity without interference from pesticides. C. fuscula overwinters as an adult and oviposits in May/June. Few specimens of the next generation, emerging in the crop, were caught in the boundary traps, suggesting the fly hibernates elsewhere. In contrast, the F1 generation of the parasitoids was caught in considerable amounts both in the crop and boundary. The abundance of parasitoids was highest in July/August; in the crop it usually started decreasing well before harvesting; in the boundary it peaked two weeks or more after harvesting. The results suggest that many parasitoids (especially females) move from the crop to the boundary (or beyond) before harvesting. In both habitats parasitoid species richness usually increased until harvesting, and thereafter decreased. The pooled parasitoid female proportion was 0.36; in crop and boundary it was 0.30 and 0.66, respectively, and the majority of species had a higher proportion of females in the boundary than in the crop. The phenology of two of the most common parasitoids is presented: The pupal parasitoid Cyrtogaster vulgaris Walker (Pteromalidae) had a high activity in the boundary, also very early (females only) and late (both sexes) in the season. The larval parasitoid Diglyphus begini (Ashmead) (Eulophidae) was less active early and late in the season, and had a much smaller boundary activity than C. vulgaris. Both sexes were present throughout the season. The annual sex ratio of D. begini was density dependent, being highly male biased in the two years with highest catches. In C. vulgaris neither density nor habitat explained the sex ratio. D. begini probably overwinters inside the mine as a preadult, having one generation on C. fuscula in the crop and another one in an alternate host away from the habitats sampled here. C. vulgaris overwinters as fertilized females in the border habitat.
We studied the predation behaviour of the "hunter fly" (Coenosia attenuata Stein) in the laboratory and greenhouse. In the laboratory, which was conducted at 25°C at 60-80% RH, with a 16L : 8D photoperiod, we examined the functional response of this species to three different pests, namely the sciarid fly (Bradysia sp.), the tobacco whitefly (Bemisia tabaci) and the leaf miner Liriomyza trifolii. In the greenhouse, we studied the population dynamics of the predator and its prey on pepper and water melon crops grown in southern Spain. Adult hunter flies were found to exhibit a type I functional response to adult sciarid flies and whiteflies, but a type II response to adult leaf miners. The type II response was a result of the greater difficulty in capturing and handling leaf miners compared to the other two species. The dynamics of the predator-prey interaction in the greenhouse revealed that the predator specializes mainly on adult sciarids and that the presence of the other prey can be supplemental, but is never essential for survival of the predator; this, however, is crop-dependent. The results on the dynamics of the predator-prey systems were obtained through a known population dynamics model with modifications.
Diglyphus isaea Walker (Hymenoptera: Eulophidae) is an important ectoparasitic wasp of many leaf miners. Ability of D. isaea to find hosts placed in artificial mines and for its larvae to pupate when the larva is not in a mine was studied. Artificial mines consisted of slits cut in index card sandwiched between two cover slips. Almost 80% of the neonate larvae of D. isaea located host larvae in artificial mines compared to only 50% of those not in a mine. Mature larvae removed from mines did not construct normal pupal chambers. Nonetheless, they pupated and emerged successfully. Larvae of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in mines are more likely to be attacked than those not in mines. Moreover, when close to a host larva this parasitoid can use vibrational cues to locate the larva in a mine. In addition, this parasitoid also did not always use volatile and gustatory cues for short range location of hosts. However, adult females of D. isaea more quickly located L. sativae larvae in the presence of the odour of juice extracted from an uninfested host plant. We conclude by proposing that the host mine is the medium by which the vibrations generated by the host larva are transmitted, which are probably the most important cue used by female D. isaea searching for hosts. That is this parasitoid first perceives mines not host larvae. These results will be helpful for developing techniques for the mass rearing of D. isaea in the future., De Yu Zou, Hong Yin Chen, Li Sheng Zhang., and Obsahuje seznam literatury
The univoltine leaf miner Chromatomyia fuscula (Zetterstedt) (Diptera: Agromyzidae) is a regular cereal pest in Scandinavia. The fly and its most important parasitoids were studied in a 15.5 ha organically-grown field in southern Norway. Each year (1992-1997), one Malaise trap was placed in the spring barley part (2.5 ha) of the field, and (except for 1994) another along the nearest wooded boundary for the whole season. Because of crop rotation, the traps changed position every year. C. fuscula and 15 parasitoid species previously reared from C. fuscula were sorted from the catches.
Few C. fuscula were trapped in the boundary, suggesting that at least the lower vegetation strata were unimportant for the overwintering fly (C. fuscula overwinters as an adult). The parasitoid complex was remarkably stable over years, and 13-15 of the species were: found each year (habitats combined); 0-6 of the species were not found in both habitats each year. Only 4 species attained fractions higher than 10% of the total annual catches in both habitats during the 6 years: the larval parasitoids Diglyphus begini (Ashmead) and Hemiptarsenus unguicellus (Zetterstedt), and the pupal parasitoids Cyrtogaster vulgaris Walker and Chrysocharis pubicornis (Zetterstedt). In the boundary, C. vulgaris dominated every year (43-83%). In the crop, this species alternated with D. begini (1992, 1994) or H. unguicellus (1997) as the dominant species.
In most years, the catches of both the leaf miner and its parasitoids were larger in the crop than in the boundary, but the species number and composition were fairly similar in the two habitats. The parasitoid diversity (Shannon-Wiener H') tended to be higher in the crop (0.8-2.0) than in the boundary (0.8-1.8). Correspondingly, the evenness (both Shannon-Wiener J' and species rank on In abundance) was higher, and the dominance (Berger-Parker) lower, in the crop than in the boundary. Every year, overwintered C. fuscula invaded the crop, but only in 1993 and 1997 did the trapping reveal a distinct next generation, suggesting a very high pre-adult mortality the other years. In 1993 and 1997, C. vulgaris and D. begini had rather similar abundances in the crop, and the lowest combined fractions (less than 60%) of the years, leading to the highest diversity and the lowest dominance through the 6 years (in both habitats).
Our results indicate that the boundary was part of the parasitoids' foraging/overwintering area, and that the boundary was more important to the parasitoids than to their leaf miner host. Boundaries therefore seem to be important for the control of C. fuscula.